
CSCI 2321 March 8, 2021

Slide 1

Administrivia

• (None.)

Slide 2

Flow of Control — Review/Recap

• With beq, bne, j, and slt, we have almost everything we need to

translate from a HLL to MIPS assembly.

• Except for calls to functions (what the textbook calls “procedures”). So . . .

1

CSCI 2321 March 8, 2021

Slide 3

Procedure Calls

• How do we call procedures (a.k.a. functions, methods)? Consider an

example:

a = a + a;

x = foo(a);

b = b + b;

y = foo(b);

/* */

int foo(int n) { return n+1; }

• If we’ve compiled this code (and function foo), what do we have in memory

when it’s running? What’s supposed to happen when we get to a call to foo?

Slide 4

Procedure Calls, Continued

• What we have in memory is machine code for the calling program and code

for foo.

• What should happen when foo is called:

– Jump to start of foo, passing it one parameter.

– Execute foo.

– Jump back to caller, at the point in the code just after the call, with a return

value the caller can use.

• Jumping to foo we know how to do, but how to get back? And how do we

manage parameters and the return value?

2

CSCI 2321 March 8, 2021

Slide 5

Procedure Calls, Continued

• So what we have to do to call a procedure is:

– Put parameters where procedure can find them.

– Transfer control to procedure.

– Acquire storage resources for procedure (recall that every time you call a

C function you get a “new copy” of all its local variables).

– Run procedure.

– Put results where caller can find them.

– Return control to caller, to a point just after the call.

• How to do all this?

Slide 6

Procedure Calls, Continued

• Aside(?):

Every language that compiles (or assembles) to machine language could do

it differently, but useful to define standard way, so languages can interoperate.

(Also allows operating system to load program and start it up without knowing

source-code language.)

3

CSCI 2321 March 8, 2021

Slide 7

Sidebar: Register Conventions Revisited

• From hardware point of view, all general-purpose registers are in some sense

the same, with the sort-of exception of registers 0 (always has value 0) and

31 (discussed soon).

• From software point of view, it’s useful to agree about how to use them — for

parameters, return values, etc. Idea is that compilers automatically enforce

conventions, human-written assembly code should follow them too.

Slide 8

Register Conventions, Continued

• So far:

$s0 through $s7 for variables.

$t0 through $t9 as “scratch pads”.

• Add two more groups:

$a0 through $a3 for parameters (punt for now on what to do if more than

four).

$v0 and $v1 for return values. (Why two? to make it easy to return a 64-bit

value such as used for floating-point.)

4

CSCI 2321 March 8, 2021

Slide 9

Jumping To/From Procedures

• When we jump to a procedure, must remember where we came from so we

can return. Do this with “jump and link”

jal label

which puts address of next instruction in register $ra (31) and jumps to

label. (How do we know address of next instruction? “Program counter”

(special register) has address of current instruction.)

• We can then get back with “jump to register”

jr r1

which jumps to address in register r1.

Slide 10

Register Saving and Local Variables

• Actually running the called procedure is straightforward, right?

• Yes, except we need some way to save/restore registers — so we don’t mess

up caller. (By convention, “temporary” registers might change, but most

others don’t.)

• We also need a way to make space for local variables.

5

CSCI 2321 March 8, 2021

Slide 11

Register Saving and Local Variables, Continued

• Typical solution: Use part of memory as a stack (familiar ADT, right?), for

saving registers and other local storage. Makes recursive procedures easier.

• By convention, stack starts at high address and “grows” to lower addresses.

and register $sp (“stack pointer”) points to top. “Push” and “pop” are then

straightforward. (Note: $sp just a symbolic name for one of the 32

general-purpose registers.)

(Recall discussion of “buffer overflows” from CSCI 1120?)

• (Review starter code. Everything in it should now make some sense?)

Slide 12

Example

• How to compile the following?

int main(void) {

int a, b, c, x;

a = 5; b = 6; c = 7;

x = addproc(a, b, c);

return 0;

}

int addproc(int a, int b, int c) {

return a + b + c;

}

(Sample program call-addproc.s.)

6

CSCI 2321 March 8, 2021

Slide 13

Variables

• Space for local variables typically allocated on the stack. Since $sp can

change during computation, can use register $fp (“frame pointer” — another

of the 32 general-purpose registers) to point to start of area (“procedure

frame”) for saved registers, local variables.

• What about other variables?

Two basic types: fixed/static (think global variables) and dynamically allocated

(think C malloc(). (e.g., with malloc in C).

MIPS convention: Put them right after the program code, use register $gp

(“global pointer”, also one of general-purpose ones) to point to them.

Typically call the memory used for dynamically-allocated variables “the heap”.

Slide 14

A Little (More) About Assembly Language and
Assemblers

• We’ve done short examples of translating assembly language into machine

language.

• Normally this is done programmatically, by an “assembler”. Accepts symbolic

representations of instructions. Also allows defining “labels” (strings ending

:) and uses some directives (starting with “.”, e.g., .word) to help keep

track of instructions, define character strings, etc.

• Details for MIPS assembler in Appendix A.

7

CSCI 2321 March 8, 2021

Slide 15

Assembly Language — Program Elements

• Instructions: Self-explanatory? Each represents one machine-language

instruction — usually anyway. Some are are “pseudoinstructions”, translated

into one or more “real” instructions (ones that have machine-language

equivalents). Example is la, translated into combination of lui and ori.

• Labels: Identifier (following usual rules for such) followed by :.

Useful/necessary in writing code but not (usually) preserved in object code.

• Directives: Start with . and tell the assembler something. (Next slide.)

Slide 16

Assembly Language — Directives

• .text indicates that what follows is instructions.

• .data indicates that what follows is data.

• .word, .asciiz, .space reserve space for data (and also, for the first

two, initialize it).

• .globl identifies a label that might be referenced by outside code. (Think

“separate compilation” and how one might combine object files. More about

this soon.)

8

CSCI 2321 March 8, 2021

Slide 17

System Calls

• System calls are how user programs request service from operating system

— not just in MIPS, but in general. In MIPS the instruction is syscall;

other architectures have something analogous.

• System calls similar to procedure calls in some ways: Need to communicate

to O/S which service you want (e.g., write some text to “standard output”) and

possibly parameters (e.g., text to write). As with procedure calls, do this by

putting values in particular registers, but then rather than jal we use

syscall.

So why not just use jal?? Well . . .

Slide 18

System Calls, Continued

• Important distinction (discussed more in O/S courses, such as our

CSCI 3323): Code for “system call” executes as part of the O/S, which means

not subject to same restrictions as user programs (e.g., on memory access).

• Details (e.g., what services are offered) depend on O/S. Very primitive O/S

included in spim supports some for simple I/O; details in Appendix A.

9

CSCI 2321 March 8, 2021

Slide 19

System Calls in MIPS — Details

• How to specify which service, arguments?

Put number indicating which service in $v0. (Appendix A has a list of

services.)

If parameters needed, put them in $a0 and $a1.

• Return value in $v0.

Slide 20

Minute Essay

• Questions?

10

