
CSCI 2321 March 17, 2021

Slide 1

Administrivia

• (By e-mail.)

Slide 2

Working With Characters

• Character data can be ASCII (1 byte per character) or Unicode (2 bytes per

character). Character strings can be represented various ways (struct or

similar, or null-terminated). (Aside: Unicode is — remarkable in how many

alphabets have encodings. Wikipedia article is interesting!)

• How to work with characters? lb/sb, lh/sh.

• Nothing very deep here?

1

CSCI 2321 March 17, 2021

Slide 3

Working with Constants, Revisited

• Recall addi instruction. Exists because often we need to use a small

constant in a program.

• Uses same format (“I format”) as lw and sw, which allows 16 bits for

constant.

• What if we need more than 16 bits? “Load upper immediate” instruction:

lui register, constant

Puts (16-bit) constant in “upper” 16 bits of register. Follow with addi (or,

better, ori) to load a full 32-bit constant.

• Example: two instructions assembler generates for la pseudoinstruction

(example in simulator).

Slide 4

Addressing Modes

• We’ve been unspecific about how to specify addresses of a lot of things.

• So, now look at various “addressing modes” — ways to specify where to find

an operand.

• Which is used? Defined by instruction format (R, I, J). (J? yes, format for jump

instructions that include a label — jal and j.)

2

CSCI 2321 March 17, 2021

Slide 5

Addressing Modes, Continued

• Register addressing: Value is in one of the general-purpose registers.

Assembler defines symbolic names for them (e.g., $t0).

• Immediate addressing: Value is in instruction itself (as in, e.g., addi).

• Base-displacement addressing: Value is in memory, with address calculated

by adding a displacement to what’s in a register. Example is memory-address

operand of lw, sw.

• PC-relative addressing (more shortly).

• Pseudo-direct addressing (more shortly).

Slide 6

PC-Relative Addressing

• Address is formed by adding offset in instruction (16 bits) and contents of the

program counter (special register).

(Actually, address is offset times 4, plus the updated program counter.

Simulator doesn’t quite simulate this, unless run with the flag

-delayed branches.

• Example is conditional branches (beq, bne).

• Does this limit what we can do with beq and bne? If so, how often will it

matter? What could we do to work around it?

3

CSCI 2321 March 17, 2021

Slide 7

PC-Relative Addressing, Continued

• 16-bit offset obviously limits how far we can “jump”. But probably fine for most

uses (conditional execution, loops).

• If not, can rework code to use j or jr. (Apparently assemblers are supposed

to do this if the offset is too big.)

Slide 8

PC-Relative Addressing — Example

• As an example, try working out machine code for the bne in this line. (May

be helpful to annotate with relative locations so we easily compute offset we

need.)

bne $t0, $t1, There

add $t2, $zero, $zero

add $t3, $zero, $zero

add $t4, $zero, $zero

There:

sub $t5, $zero, $zero

4

CSCI 2321 March 17, 2021

Slide 9

PC-Relative Addressing — Example, Continued

• Look up opcode — 0x5.

• Look up register numbers — 8, 9.

• Compute needed offset by . . . Strictly speaking, should be offset from relative

location of instruction after the bne to “branch target” (There), divided by 4.

(Why divided by 4? always a multiple of 4! so last two digits always 0 . . .) But

just counting instructions gives the same effect (and here’s it 3).

• Rearranging bits and converting to hexadecimal, we get 0x15090003.

Does this agree with what SPIM shows? Not quite . . .

Slide 10

PC-Relative Addressing — Example, Continued

• In real implementations, PC has already been incremented when branch

executes. This means that the instruction right after the branch is executed

whether the branch succeeds or not — “branch delay slot”. (May depend on

version of MIPS.)

• Ignoring this behavior keeps examples manageable, so that’s what SPIM

does — and it calculates offsets from current instruction. If I ask you to

translate a branch into machine code I want you to do the right thing rather

than what SPIM does.

5

CSCI 2321 March 17, 2021

Slide 11

Pseudo-Direct Addressing

• Address is formed by combining address in instruction (26 bits) and upper bits

of program counter:

As with PC-relative addressing, no real need to store last 2 digits, since

always 0.

Actual address is address field in instruction, times 4, OR’d with upper bits of

program counter to give 32 bits in all.

• Example of use is unconditional branch (j).

• Does this limit what we can do with j? If so, will that be a problem? Can we

work around it?

Slide 12

Pseudo-Direct Addressing, Continued

• 26-bit address does limit what we can do, but probably fine for most uses

(conditional execution and loops, procedure calls).

• If not enough, can rework code to use jr. (And in fact assemblers may do

this.)

6

CSCI 2321 March 17, 2021

Slide 13

Pseudo-Direct Addressing — Example

• As an example, trying working out machine code for the previous example

with j There replacing the bne:

j There

add $t2, $zero, $zero

add $t3, $zero, $zero

add $t4, $zero, $zero

There:

sub $t5, $zero, $zero

Slide 14

Pseudo-Direct Addressing — Example, Continued

• Look up opcode — 0x2.

• To get 26-bit value for the address, need not a relative location (as for bne)

but an absolute one.

To do that, need to know where in memory the (machine) code resides.

Suppose we paste this code into the starter example, right after the “opening

linkage” code, and use as starting address of whole progrram location where

SPIM puts main:. That’s 0x0040 0024. Counting up, get an address of

0x0040 003c for There. Remove top four bits of that and divide by 4 to

get

0000 0100 0000 0000 0000 0011 11

• Putting the two fields together and converting to hexadecimal gives

0810000f, which agrees with SPIM.

7

CSCI 2321 March 17, 2021

Slide 15

Sidebar(?): Parallel Execution and Synchronization

• A lot of commodity hardware these days features multiple processing units

(“cores”) sharing access to memory. One reason for this is that in theory we

can make individual applications faster by splitting computation up among

processing elements.

• Having processing elements share memory makes parallel programming

easier in some ways but has risks (“race conditions”). Avoiding the risks

requires some way to control access to shared variables (e.g., to implement

notion of “lock”).

Slide 16

Parallel Execution and Synchronization, Continued

• Most texts on operating systems discuss synchronization issues and present

several solutions (“synchronization mechanisms”), some rather high-level and

others not.

(Why is this in O/S textbooks? because O/Ss typically have to manage

“processes” executing concurrently, either truly at the same time or

interleaved.)

• The most primitive can (with some simplifying assumptions) be implemented

with no hardware support. But hardware support is very useful.

8

CSCI 2321 March 17, 2021

Slide 17

Sidebar: Why is Implementing a Lock Hard?

• It might seem like it would be straightforward to implement a lock — just have

an integer variable, with value 0 meaning “unlocked” and anything else

meaning “locked”. And then you “lock” by looping until the value is 0, then

setting to nonzero:

while (lock != 0) {}

lock = 1;

and “unlock” by setting back to 0.

• But this doesn’t work! (Why not?)

Slide 18

Instructions for Synchronization

• Key goal in designing hardware support for synchronization is to provide

“atomic” (indivisible) load-and-store. This allows writing a low-level

implementation of “lock” idea.

• Many architectures do this with a single instruction (e.g., “test and set” or

“compare and swap”). Requires two accesses to memory so may be difficult

to implement efficiently.

• MIPS approach: Same idea, but using a pair of instructions, ll (“load

linked”) and sc (“store conditional”).

9

CSCI 2321 March 17, 2021

Slide 19

MIPS Instructions for Synchronization

• ll loads a value from memory and somehow remembers the location and

value. Syntax:

ll reg1, displacement(reg2)

Operands used as for lw.

• sc stores a value into memory — IF the location has not changed since a

previous ll from that address.

sc reg1, displacement(reg2)

Operands used almost as for lw, except that reg1 is set to indicate whether

the store “succeeded” (i.e., value had not changed since ll). So one can

regard a (ll, sc) pair as forming a single atomic load/store.

• (How to make this work? Hardware designers’ problem! glib answer but

maybe all we can do in this course.)

Slide 20

Variables — Review/Clarification

• Declaring a variable in a high-level language (e.g., int x; in C) reserves

space for it in memory (in principle anyway — more shortly) and assigns it a

name (for the purposes of compilation).

Space can be in “data” segment of memory, for static/global variables, or “on

stack” for local variables.

• Referencing the variable implies accessing the associated memory location.

(Figuring out the instructions to do that is part of the compiler’s job.

Presumably it has some sort of map from names to locations.)

In MIPS, that means a load (for read) or store (for write). A very simple

compiler would do this for every access. But . . .

10

CSCI 2321 March 17, 2021

Slide 21

Variables, Continued

• Memory access is slow compared to processor speed, so good compilers will

streamline things by sometimes keeping values of frequently-used variables

in registers, only loading or storing when necessary to preserve semantics.

This is why the textbook examples talk about associating registers with

variables. (Clearer?)

• I said “in principle” because a good compiler might even figure out that it

might be possible to just use a register to hold a variable’s value and never

assign it a memory location. Simple contrived example:

int foobar(int x) {

int y = x+1;

return y;

}

No need to have y in memory at all, right?

Slide 22

Minute Essay

• How much of the discussion of parallelism was review for you?:

• Questions?

11

