
CSCI 2321 March 22, 2021

Slide 1

Administrivia

• Via e-mail, except . . .

Slide 2

Why the Delay

• I was all set to refresh my notes on assembly and linking when one of you

asked a question I couldn’t really answer, and I figured I should try to improve

my own understanding, and

• Hours of Web-searching didn’t help. Finally I posted a query to the SIGCSE

mailing list (SIGCSE being ACM’s special-interest group for CS educators).

Where the moderators are overwhelmed, so a delay . . .

• Eventually over a dozen replies, some very helpful. After some

back-and-forth, finally I think I know enough . . .

Also it sounds like I’m not alone in thinking section 2.12 has some problems. I

think the authors are sound on concepts but not so clear about details.

Worth noting that many were using other simulators — including two who had

written their own! (Side project that could get out of hand?)

1

CSCI 2321 March 22, 2021

Slide 3

From Source to Execution — Big Picture Revisited

• Goal is to be able to translate programs written in a HLL or assembler

language into something that the operating system can load into memory and

run.

• Usually want this to be done in a way that supports separate

compilation/assembly of source code files, possibly in different languages.

(That sort of implies support for function libraries too, since a “library”

basically consists of previously-compiled code.)

• A lot of the software conventions we’ve looked at — how procedures are

called, memory use, etc. — exist to make this work.

Slide 4

Semi-Sidebar: Compilers Revisited

• In principle compilers all generate assembly-language code that follows these

conventions, so it should be possible to call a function in one language from

another language — assuming both compile to object code.

• In practice some details can get messy. Examples:

C lays out 2D arrays in “row-major” order (by rows), Fortran in column-major

order.

Some language support overloading of functions. How to implement that

might involving having a different name (think MIPS label) for each version

(e.g., “name mangling” in C++ — Wikipedia article seems good).

Usually, though, calling one language from another can be made to work.

2

CSCI 2321 March 22, 2021

Slide 5

Assembling Revisited

• Job of the assembler is to produce “object code”. Details vary among

platforms (“platform” here means combination of architecture and operating

system — think ABI as defined in Chapter 1).

• Keeping in mind the big picture, object code needs to contain:

– Machine language for instructions, typically collected into “code segment”,

a.k.a. “text segment”.

– Binary representation of any variables (.word, .asciiz, etc., in

MIPS), typically collected into “data segment”.

– Something that will make it possible for code in one object file to reference

a global symbol (procedure or data) in another, and to make absolute

addresses work given that they aren’t known at assembly time.

Slide 6

Assembling, Continued

• Even without the complication of referencing a label in another object file,

though . . .

• You know that MIPS assembly language has a notion of labels that let you

branch or jump to another place in the code, or load the address of a variable.

Some are position-independent (PC-relative addressing), but some are

absolute addresses and thus depend on where in memory program is loaded.

How can that work?

3

CSCI 2321 March 22, 2021

Slide 7

Assemblers

• Most are two-pass (like most compilers — C a notable exception!). First pass

builds table of symbols; second pass uses that to assemble.

• Start by establishing starting addresses for code and data segments.

• First pass just goes through the code, adding entries to symbol table and

keeping track of “next” address.

(NOTE that labels themselves occupy no space, but pseudoinstructions might

expand to multiple real instructions.)

Also make a note of any symbols declared as “global”.

• Second pass uses table to generate code and data, plus . . .

Slide 8

Assemblers, Continued

• Note that if separate compilation is going to work, we need more information

for next step (“linking” to combine object files). What do we need? Two things:

“Relocation information” — which instructions use absolute addresses and

what label they reference.

Symbol table — global labels and unresolved references.

• Output all of that; format is part of platform’s ABI.

• (A bit more about this in the section on linking.)

4

CSCI 2321 March 22, 2021

Slide 9

Linkers

• Job of linker is combine one or more object files into “executable file” —

something the operating system can load into memory and execute.

What does that imply . . .

• Instructions that aren’t complete yet because they reference procedures or

data in another object file need to be corrected.

• Instructions that aren’t complete/correct because they use absolute

addresses need to be corrected.

Note that absolute addresses could still not be right, if it’s not known at link

time where in memory the program will be loaded.

Slide 10

Linkers, Continued

• So linker must do some things:

• Merge code segments, data segments.

• Merge symbol table into combined symbol table. (Error if unresolved symbols

— which you may have seen in linking programs?)

• Use it to resolve unresolved references.

• Modify any absolute addresses, keeping track of the instructions that use

them if they will need to be changed when the program is loaded.

• Output all of that (as an “executable”); format is part of platform’s ABI.

5

CSCI 2321 March 22, 2021

Slide 11

Sidebar: Function Libraries

• Worth noting that link step is where code from system and other libraries is

merged in.

• May explain why gcc sometimes fails with error messages starting ld: —

linker isn’t looking in all the needed libraries.

• In times past, code from library merged in directly, and sometimes that still

makes sense. Alternately . . .

Slide 12

Sidebar Continued: Dynamic Linking

• Copying library code into executable may not be efficient — may result in

pulling in code for unused procedures. Also, if the system supports

concurrent execution of multiple threads/applications/etc., might be nice to

allow them to share a single copy in memory of library code.

• “Dynamic linking” supports this, and has the side benefit(?) of allowing

updates to library code without relinking all applications that use it. (Is this

always a benefit?)

• Implementations have different names (“DLL” in Windows, “shared library” in

UNIX/Linux). How it works is similar: At link time, link in “stub” routine that at

runtime locates the desired code, loads it into memory (if necessary!) and

patches references.

6

CSCI 2321 March 22, 2021

Slide 13

Loaders (Textbook)

• Nice explanation in Appendix A. Summary on p. 135.

• Operating system (loader) must:

• Read executable file to get sizes of text and data segments.

• “Create address space” big enough for text, data, and stack segments.

(Details vary by O/S.)

• Initialize text and data segments from executable file.

(Appendix doesn’t mention this, but if the program isn’t always loaded at the

same address, somewhere in here any references to absolute addresses

need to be modified.)

Slide 14

Loaders, Continued

• Set up registers — stack pointer, global pointer, etc.

• Push any arguments to program onto stack. (Think command-line

arguments?)

• Jump to start-up code that copies arguments to registers and calls program’s

main(). On return, makes a system call to terminate program.

• Note in passing that code invoked by “system calls” is not part of the program;

the syscall instruction jumps to code in the O/S’s part of memory, in a

way that allows it to execute with raised privileges.

7

CSCI 2321 March 22, 2021

Slide 15

From Source to Execution in SPIM

• SPIM combines assemble, link, and load steps:

Assembles (in some way that lets it show source code lines).

Loads resulting object code into memory. Can load more than one source file,

but note that even so it doesn’t really have to link; can just continue

assembling.

• Always loads into memory at the same address, right after some code that . . .

This is the start-up code just mentioned: Remember parameters to C’s

main()? argc, argv? and there’s an optional third one, a list of

environment variables. This sets that up. (I’m not sure where values come

from for SPIM!)

• IMO, called main should start by pushing $ra onto stack, end by popping it

off and using jr to return to SPIM code.

(Many examples online don’t do that. Not sure why not!)

Slide 16

Sidebar: Cross Assembling

• Very possible to generate, on one architecture, object code for another —

“cross compiler/assembler”.

• I’ve never tried it (on my long long list of things to do sometime), but one of

my SIGCSE replies was from someone who had an oldish one, and they sent

me some listings showing a dump of output. (I don’t think I should post this

but can show it here.) It’s much as you might think!

8

CSCI 2321 March 22, 2021

Slide 17

Linking — Example

• Textbook presents an example starting on p. 132. Details are frankly

confusing, especially for SPIM users — and trying to clarify is what sent me

off on my days-long attempt to understand better!

• Part of the problem — discussion doesn’t seem to mesh well with how SPIM

does things . . .

• To be continued . . .

Slide 18

Minute Essay

• Do you feel like you understand the basic concepts here — the role of

assemblers, linkers, and loaders — even if the details are a bit vague?

9

