
CSCI 2321 March 24, 2021

Slide 1

Administrivia

• Via e-mail.

Slide 2

Assemblers, Linkers, Loaders — Recap/Review

• Assemblers translate source code into object files containing translated code

and data plus some tables to make linking with other object files possible.

• Linkers combine object files to produce executables.

• Loaders load executable files into memory and start the program.

1

CSCI 2321 March 24, 2021

Slide 3

Linking — Example

• To recap/review:

• Textbook presents an example starting on p. 132. Details are frankly

confusing, especially for SPIM users — and trying to clarify is what sent me

off on my days-long attempt to understand better!

• Part of the problem — discussion doesn’t seem to mesh well with how SPIM

does things . . .

Slide 4

Referencing Data in Data Segment

• Textbook correctly points out that keeping an address into the data segment

in a register ($gp) means we can get an address one instruction not two.

However, note that the range of data that can be addressed this way is limited

to what can be accessed using 16-bit offsets.

• What if you have a data segment bigger than that?

2

CSCI 2321 March 24, 2021

Slide 5

Referencing Data in Data Segment, Continued

• Solution used in some (many? most?) systems — separate data segment

into distinct pieces:

– Read-only data, initialized; no size limit.

– Data, initialized; no size limit.

– Data, unintialized; no size limit.

– “Small” initialized data.

– “Small” uninitialized data.

Combined size of “small” pieces must fit in memory addressable using $gp

and a 16-bit offset.

Slide 6

lw, sw Revisited

• Strictly speaking, these instructions specify a memory address using a

register and a fixed displacement.

• However, seems useful to be able to be able to load and store from address

specified via label. Assembler could support that . . .

3

CSCI 2321 March 24, 2021

Slide 7

lw, sw With Labels — Textbook’s Way

• Register $gp points into the data segment, at an address that will allow

addressing as much of the data segment as is possible using a 16-bit signed

value (which is what displacement is in lw and sw).

• lw and sw are assembled into code that uses $gp, e.g.,

lw $t0, X

is assembled into

lw $t0, D($gp)

where D is the displacement from $gp to X, calculated during linking.

• (What if the data segment is too big for this? Not sure the textbook talks about

that!)

Slide 8

lw, sw With Labels — SPIM’s Way

• SPIM puts its data segment at 0x1000 1000. It does initialize $gp to

0x1000 8000, like the textbook says.

• But what does this say about referencing code in SPIM’s data segment using

$gp, given that SPIM’s data segment starts at 0x1000 1000? Pause

and think about it . . .

4

CSCI 2321 March 24, 2021

Slide 9

lw, sw With Labels — SPIM’s Way, Continued

• With $gp set to 0x1000 8000, 16-bit offsets allows referencing

0x1000 0000 through 0x1000 ffff. And SPIM’s data segment

starts where . . .

• (I can’t believe I didn’t think of it that way earlier! No wonder I couldn’t find

any way to make SPIM accept code that would assemble to what the textbook

says!)

Slide 10

lw, sw With Labels — SPIM’s Way, Continued

• SPIM apparently defines pseudoinstructions for lw and sw with labels.

Based on some experiments . . .

• Just referencing a label, e.g.,

lw $t0, A

assembles into an lui to put the top 16 bits of the address of SPIM’s data

segment into $at (and zero the low-order bits), and then a lw that uses

$at for the register and the offset to A as the displacement (calculated using

symbol table).

(Try it!)

5

CSCI 2321 March 24, 2021

Slide 11

lw, sw With Labels — SPIM’s Way, Continued

• Referencing a label and a register, e.g.,

lw $t0, A($t1)

assembles similarly, except that the lui to set $at to the address of the

data segment is followed an addu (unsigned add) to add the contents of

$t1. (Note that if $t1 is an index into an array of “words” this won’t do what

you might want.)

Slide 12

Linking — Textbook Example Continued

• Computing displacements for lw and sw — why it works may be unclear.

• Goal is to come with up displacements, call them DX and DY, that when

added to address in $gp (0x10008000) gives addresses of X and Y.

(We know what those are based on positioning data segments one after the

other starting at 0x10000000).

• Some simple algebra says that, e.g.,

DX is 0x10000000 - 0x10008000

which when turned into a 16-bit quantity in two’s complement is what the

textbook says (try adding it to what’s in $gp using sign extension).

6

CSCI 2321 March 24, 2021

Slide 13

Sidebar: Making it (Somewhat) Real

• I like to be able to try things and see if they work like the books say they do.

Maybe you too (or maybe not!).

• To do this with MIPS assembling and linking, would need a cross-assembler.

But I thought it might be interesting to try it on x86 . . .

• I started by writing a simple C program with two files, generated object and

executable files, and tried out commands . . .

Slide 14

Sidebar Continued

• nm pgm.o shows symbol table. man nm for what the more-inscrutable

things mean.

objump -t shows roughly the same thing in a different format. man

objdump explains.

• objdump -r shows relocation information.

• nm main is — interesting. Way more than one might think. Undefined

symbols still — dynamically-linked code. ldd main may help some.

• objdump -r main not useful, but obdump -R main is.

• objdump -t main — again, more than one might think.

7

CSCI 2321 March 24, 2021

Slide 15

Homework 4 — Example of Assembling / Linking

• Next homework will ask you to work through (some) details, using as input a

couple of representative MIPS source-code files. Useful but time-consuming.

I’m working on how to streamline . . .

Slide 16

Minute Essay

• Does this all make (some) sense? In a way I feel like a lot of the details are

kind of common sense once you understand the goal (allow for separate

compilation, including combining code in different languages). Agreed? or

maybe “agreed, but the devil is in the details”?

8

