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Administrivia

o (Via e-mail.)
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4 Homework 4 Assemble/Link Problem — Why? )

o Textbook’s example of linking is not, in my opinion, all that clear. Further — |
think it should go further in showing how the whole process works.

So in Homework 4 — fill in more details, and in a way compatible with SPIM.

e Recycling similar problems from previous years not an option — | was wrong

Slide 2 about about what'’s in the symbol table and relocation information.

e Getting it reasonable straight in my head — very long process, many
frustrations! | tried to incorporate what | could find out about ELF format for
object files, widely used in UNIXworld. But that about “devil is in the details”?

So true here.
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Homework 4 Assemble/Link Problem — Example

e Problem write-up includes a worked-through example, meant to be helpful.

o Work through steps ...
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Homework 4 Assemble/Link Problem — Example,
Continued
e First step — “annotate” source: Expand pseudoinstructions, label each
instruction with offset.
o Next build symbol table, relocation information. (I got a bit stuck here, thinking
Slide 4 symbols all had to be global. Don’t think that can work, though.)

e Finally combine symbol tables, relocation information sections, and “patch”

instructions.

e Problem asks you to express things in hexadecimal. If that’s hard — example
directory index mentions some options.
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Homework 4 Assemble/Link Problem — Concerns

e I'm still unsure about details of references to local-only labels:

Seems like they must be available in some contexts (e.g., jumps to local-only
labels inside same module), but not in others (jumps to local-only lables from
another module).

Slide 5 Further, can’t require non-global labels to be unique, and — how can that

work?

e But clearly possible, and — I'm leaving this as an open question for now.

Chapter 2 Wrap-Up

e “Real stuff” sections look interesting, but — skim if interested.

o One more topic worth saying a few words about . ..
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Compiling — Review(?)

e Compiler translates high-level language source code into assembly language.
A single line of HLL code could generate many lines of assembly language.

e Just generating assembly language equivalent to HLL is not trivial. Result,
however, can be much less efficient than what a good assembly-language
programmer can produce. (When HLLs were first introduced, this was an
argument against their use.)

e But eventually compilers got “smarter” ...

~N
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Compiling, Continued

e One reason compilers are so big and complicated is that more and more they
try to “optimize” (generate code that’s more efficient than a naive translation),
for example, by keeping values in registers to reduce the number of memory

accesses.

e Conventional wisdom now is that compilers can generate better

assembly-language code than humans, at least most of the time.

e Further, many architectures (“RISC”, short for Reduced Instruction Set
Computing) designed with the idea that most programs will be written in a
high-level language, so ease of use for assembly-language programmers not
a goal.

~N
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Compiling, Continued

e Textbook goes into some detail about compiling C code to loop through an
array, showing a version that uses indices and one that uses pointers. They
claim that a “good” compiler will likely generate the same code for both.
Can (try to) test this with gcc — write it both ways, compile with —S, and

Slide 9 compare. Results with —O0 (no optimization) likely different, but with

optimization (gcc defines several levels) should in principle be the same. |

did get that result with some previous version of gcc but now don't.

e Standard advice — write for clarity, trust compiler to generate good assembly
code — probably the way to go!

Compiling, Continued

o Note in passing that compiler optimizations can play havoc with attempts to
time things: C compilers are allowed to just skip any code that doesn’t have
an observable effect (i.e., result isn’t printed or otherwise used). (In practice
they may or may not.)
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4 )

e Questions about Homework 4 now? though you may not really know until you

start working on it.
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