
CSCI 2321 March 29

Slide 1

Administrivia

• (Via e-mail.)

Slide 2

Homework 4 Assemble/Link Problem — Why?

• Textbook’s example of linking is not, in my opinion, all that clear. Further — I

think it should go further in showing how the whole process works.

So in Homework 4 — fill in more details, and in a way compatible with SPIM.

• Recycling similar problems from previous years not an option — I was wrong

about about what’s in the symbol table and relocation information.

• Getting it reasonable straight in my head — very long process, many

frustrations! I tried to incorporate what I could find out about ELF format for

object files, widely used in UNIXworld. But that about “devil is in the details”?

So true here.

1



CSCI 2321 March 29

Slide 3

Homework 4 Assemble/Link Problem — Example

• Problem write-up includes a worked-through example, meant to be helpful.

• Work through steps . . .

Slide 4

Homework 4 Assemble/Link Problem — Example,
Continued

• First step — “annotate” source: Expand pseudoinstructions, label each

instruction with offset.

• Next build symbol table, relocation information. (I got a bit stuck here, thinking

symbols all had to be global. Don’t think that can work, though.)

• Finally combine symbol tables, relocation information sections, and “patch”

instructions.

• Problem asks you to express things in hexadecimal. If that’s hard — example

directory index mentions some options.

2



CSCI 2321 March 29

Slide 5

Homework 4 Assemble/Link Problem — Concerns

• I’m still unsure about details of references to local-only labels:

Seems like they must be available in some contexts (e.g., jumps to local-only

labels inside same module), but not in others (jumps to local-only lables from

another module).

Further, can’t require non-global labels to be unique, and — how can that

work?

• But clearly possible, and — I’m leaving this as an open question for now.

Slide 6

Chapter 2 Wrap-Up

• “Real stuff” sections look interesting, but — skim if interested.

• One more topic worth saying a few words about . . .

3



CSCI 2321 March 29

Slide 7

Compiling — Review(?)

• Compiler translates high-level language source code into assembly language.

A single line of HLL code could generate many lines of assembly language.

• Just generating assembly language equivalent to HLL is not trivial. Result,

however, can be much less efficient than what a good assembly-language

programmer can produce. (When HLLs were first introduced, this was an

argument against their use.)

• But eventually compilers got “smarter” . . .

Slide 8

Compiling, Continued

• One reason compilers are so big and complicated is that more and more they

try to “optimize” (generate code that’s more efficient than a naive translation),

for example, by keeping values in registers to reduce the number of memory

accesses.

• Conventional wisdom now is that compilers can generate better

assembly-language code than humans, at least most of the time.

• Further, many architectures (“RISC”, short for Reduced Instruction Set

Computing) designed with the idea that most programs will be written in a

high-level language, so ease of use for assembly-language programmers not

a goal.

4



CSCI 2321 March 29

Slide 9

Compiling, Continued

• Textbook goes into some detail about compiling C code to loop through an

array, showing a version that uses indices and one that uses pointers. They

claim that a “good” compiler will likely generate the same code for both.

Can (try to) test this with gcc — write it both ways, compile with -S, and

compare. Results with -O0 (no optimization) likely different, but with

optimization (gcc defines several levels) should in principle be the same. I

did get that result with some previous version of gcc but now don’t.

• Standard advice — write for clarity, trust compiler to generate good assembly

code — probably the way to go!

Slide 10

Compiling, Continued

• Note in passing that compiler optimizations can play havoc with attempts to

time things: C compilers are allowed to just skip any code that doesn’t have

an observable effect (i.e., result isn’t printed or otherwise used). (In practice

they may or may not.)

5



CSCI 2321 March 29

Slide 11

Minute Essay

• Questions about Homework 4 now? though you may not really know until you

start working on it.

6


