
CSCI 3190 April 12, 2004

Slide 1

Administrivia

• Homework 7 (makefiles) on Web. Due next Monday.

• My CSCI 3291 next fall will be Unix system administration. (By request of

Dr. Pitts!) Required background is what you’ve (presumably) learned in this

course.

Slide 2

Minute Essay From Last Lecture

• Question: Anything else you want to do from the command-line?

• Many answers — some outside the scope of the course. One request was for

regular expressions — today. Several requests for mail — next time. Also as

many others as we have time for. I’ll probably also talk a little about X, window

managers, etc.



CSCI 3190 April 12, 2004

Slide 3

Commands, Continued from Last Week

• (See notes from last time also.)

• script is still (maybe) useful, but use cat or more to view results. Can

also use as a crude “view what another user is doing” by combining script

-f and tail -f.

Slide 4

Regular Expressions

• Definition from Wikipedia:

A regular expression (abbreviated as regexp or regex) is a string that

describes a whole set of strings, according to certain syntax rules.

These expressions are used by many text editors and utilities

(especially in the Unix operating system) to search bodies of text for

certain patterns and, for example, replace the found strings with a

certain other string.

• Idea has roots in formal theory of languages, where the “languages” (sets of

strings) described by regular expressions are exactly the ones accepted by

finite state automata.



CSCI 3190 April 12, 2004

Slide 5

Regular Expressions and Unix Tools

• Tools that use regular expressions include editors and also text-manipulation

commands such as grep and sed. Also supported in many programming

languages, especially ones for scripting (Perl, Python, bash, etc.).

• This being Unix, not all the tools accept exactly the same syntax. POSIX

defines two standards, “basic” and “extended”. Some tools/languages add

more. Simple stuff is very similar in all versions, fortunately. Key difference —

in basic syntax, must precede many special characters with “escape

character” (backslash).

Slide 6

Character Literals and Metacharacters

• Most characters represent themselves.

hello matches what?

• Other characters are “special” (metacharacters):

ˆ matches start of line

$ matches end of line

. matches any character (except newline)

To use these as regular character literals, “escape” with a backslash.

Example: \.5



CSCI 3190 April 12, 2004

Slide 7

Character Classes

• Character classes represent “one of these characters”.

Examples: [abcd], [0-9]

• ˆ at the start of a list means “any character other than these”:

Example: [ˆabcd]

• Most tools define some shorthand:

Example: \s for whitespace

Example: [:alpha:] for letter

Example of use: [ˆ[:print:]]

Slide 8

“OR” (Alternation)

• Unix pipe symbol (|) separates alternatives. (Must escape in basic syntax.)

Example: cat|dog

• (What about AND? In many contexts, doesn’t mean anything anyway. For

grep, pipe one grep into another.)



CSCI 3190 April 12, 2004

Slide 9

Quantifiers

• * means “preceding character (or group), zero or more times”.

Example: .*

• + means “preceding character/group, one or more times”. (Must escape in

basic syntax.)

Example: a+

• {N,M} means “preceding character/group, N to M times”. (Must escape curly

brackets in basic syntax.)

• Notice that quantifiers are “greedy” — match longest string possible.

Slide 10

Grouping in Regular Expressions

• Use parentheses to group. (Must escape them in basic syntax.)

Example: (abc)(def)

Example: (abc)*

• Can then “backreference” groups, with \1, \2, etc.

Example: (abc)(.*)\1



CSCI 3190 April 12, 2004

Slide 11

A Few More Tricks

• Angle brackets match beginning/end of word. (Must escape in basic syntax.)

Example: <hello>

Slide 12

Usage of Regular Expressions, Revisited

• Can use regular expression to search — grep, search in vi.

• Can also use them to modify — sed, search-and-replace in vi.

Backreferences can be useful here!

Example: s/\(ˆ..\)\(.*\)/\2\1



CSCI 3190 April 12, 2004

Slide 13

Where to Learn More

• man and/or info pages for sed, grep.

• Online help for vim.

• Books and online references/tutorials . . .

• Useful advice from vim’s help:

Which of these should you use? Whichever one you can remember.

Slide 14

Minute Essay

• Try writing a regular expression that would match a “license plate” string of

the form “one uppercase letter, then two digits, then three uppercase letters”.


