
CSCI 3194 September 10, 2014

Slide 1

Administrivia

• Reading assignments coming soon.

• Homework 1 will be on the Web soon. Due in about a week.

Slide 2

Reading The Fine Manuals

• One of the most useful things you can learn is how to learn more.

Documentation on UNIX systems is not always perfect, and it’s not

particularly novice-friendly, but usually it’s thorough.

• Places to look:

– man pages.

– info pages.

– Elsewhere on the system. locate on Linux may help.

– The Web, via your favorite search engine.

CSCI 3194 September 10, 2014

Slide 3

RTFM — man pages

• Reference documentation (as opposed to tutorials).

• Organized into “sections” (user commands, sysadmin commands, library

functions, etc.). Can have entry with same name in multiple sections. -a

option or section number gives access to non-default.

• Of particular interest is the section SEE ALSO.

• man -k (or apropos) to search for command names.

• Try man man . . .

• Now you might want to know about more, or less.

Slide 4

RTFM — info pages

• Also reference documentation, sometimes more current / complete than man

pages. (Why are there are two systems? Probably historical reasons!)

• Organized in a way somewhat similar to hypertext.

• Try info info . . .

CSCI 3194 September 10, 2014

Slide 5

Other Useful Info-Gathering Commands

• whereis.

• type.

• file.

• which.

Slide 6

A Little About Files

• A key underlying concept — “everything’s a file” (sequence of bytes).

Directories are files. Devices are represented as “special files”. Many files are

text.

• Things to note:

– Windows/DOS “extensions” idea doesn’t really apply.

– Also no notion of “drive letters” — all paths form a single hierarchy.

Removable media can be “mounted”.

– Security model is simple but fairly flexible — rights (read, write, execute)

for owner, group, others.

– “Links” (hard or soft) allow non-tree directory structure.

• Be familiar with basic commands to manipulate/navigate filesystem.

CSCI 3194 September 10, 2014

Slide 7

A Little About Processes

• Another key concept — process as one of a set of “concurrently executing”

entities (users, applications, etc.)

• Things to note:

– Processes can spawn “child” processes. (This happens, e.g., every time

the shell runs a command.)

– Processes can have “environment variables”, inherited by child processes.

Examples — USER, PATH.

Slide 8

A Little About Shells

• Several choices; most commonly used are probably bash and tcsh. By

default, you get the one in your entry in the password file.

• How to find out what that is? echo $SHELL. (This displays the

environment variable SHELL. More about those later.)

• How to change? chsh command on some systems; on others, can only be

changed by administrator.

Or start a different one by typing its name, like any other command.

• Following discussion is about bash, but many other shells offer similar

functionality.

CSCI 3194 September 10, 2014

Slide 9

What Your Shell Does With What You Type

• Shell provides in-place editing (arrow and other keys), command history, tab

completion of filenames, etc. — until you press “return”.

• Shell then processes command line — expands wildcards and references to

variables, “tokenizes” command into commandname and parameters.

• Shell then either processes command (if a builtin), or locates executable in

“search path” (PATH environment variable) and forks off a new process.

• Command’s return code then available via shell variable.

• (Aside: Wonder what a simple shell program looks like? Look at first

homework for CSCI 3323 . . .)

Slide 10

What bash Does With What You Type — In-Place
Editing

• Simple editing — left and right arrows; ctrl-a, ctrl-e, etc.

• Command history — move forward/back with up and down arrows, search

with ctrl-r.

• Tab completion — for filenames, command names, etc.

• Read about bash and/or readline — man and info pages for more

info.

CSCI 3194 September 10, 2014

Slide 11

What bash Does With What You Type — Processing
Command Line

• Shell takes completed line and expands filename wildcards, references to

variables (more about both in next slides), “tokenizes” command into

commandname and parameters, splitting (by default) at whitespace.

• If that’s not what you want — e.g., to include a space in a filename, inhibit

expansion of filename wildcards, etc. — use escape character (backslash) or

quotes. Single quotes inhibit all of this, double quotes all but variable

substitution.

Slide 12

What bash Does With What You Type — Processing
Command Line

• Shell locates command. Two cases:

– Builtin command — shell executes directly.

– External command — shell finds an executable by looking in “search path”

(PATH environment variable) and forks off a new process.

(Why the distinction? Some things can’t reasonably by done in a new (“child”)

process!)

• Command’s return code then available via shell variable.

(Why would anyone care? Useful in writing scripts.)

(Where does the return code come from? whatever is returned by program —

e.g., from C program’s main.)

CSCI 3194 September 10, 2014

Slide 13

What bash Does With What You Type — Miscellaneous

• Notice that some keys have meanings other than what Windows users are

used to — ctrl-C, ctrl-D, ctrl-Z, possibly also ctrl-S, ctrl-Q (depending on

environment — e.g., which terminal emulator).

Slide 14

Environment Variables

• Associated with a process (e.g., a shell) there can be “environment variables”.

Useful as another way (in addition to command-line arguments, input from

file/keyboard, etc.) of giving process information.

• Some variables of interest — PATH, SHELL, HOME, USER.

• To display current value, printenv FOO or echo $FOO.

• To set value, FOO=value (no spaces) in bash.

• To make value available to other commands, export FOO.

CSCI 3194 September 10, 2014

Slide 15

Filename Expansion

• You probably already know about using * as a wildcard for specifying one or

more files. Other options too — “filename expansion” section in full bash

manual or info pages.

• echo can be used to check what a particular expression expands to.

Slide 16

Minute Essay

• None really — sign in, unless you have questions?

