
CSCI 3194 October 29, 2014

Slide 1

Administrivia

• Reminder: Homework 2 due today (written problems in hardcopy by 5pm,

programming problems by e-mail by 11:59pm).

• Homework 3 on the Web; due next week.

Slide 2

Minute Essay From Last Lecture

• Most people seem to use vi in Linux, because it’s what we teach in CS1,

though there was a mention of gedit . You might try gvim if you’re working

at the console.

CSCI 3194 October 29, 2014

Slide 3

Regular Expressions

• From an old Wikipedia definition:

A regular expression (abbreviated as regexp, regex or regxp) is a string

that describes or matches a set of strings, according to certain syntax

rules. Regular expressions are used by many text editors and utilities to

search and manipulate bodies of text based on certain patterns.

• Idea has roots in formal theory of languages, where the “languages” (sets of

strings) described by regular expressions are exactly the ones accepted by

finite state automata.

Slide 4

Regular Expressions and UNIX Tools

• Tools that use regular expressions include editors and also text-manipulation

commands such as grep and sed . Also supported in many programming

languages, especially ones for scripting (Perl, Python, bash , etc.).

• This being UNIX, not all the tools accept exactly the same syntax. POSIX

defines two standards, “basic” and “extended”. Some tools/languages add

more. Simple stuff is very similar in all versions, fortunately. Key difference —

in basic syntax, must precede many special characters with “escape

character” (backslash).

Also notice that to keep shell from doing its thing with your regular

expressions (which generally you don’t want), must enclose in single or

double quotes.

CSCI 3194 October 29, 2014

Slide 5

Character Literals and Metacharacters

• Most characters represent themselves.

hello matches what?

• Other characters are “special” (metacharacters):

ˆ matches start of line

$ matches end of line

. matches any character (except newline)

To use these as regular character literals, “escape” with a backslash.

Slide 6

Character Literals and Metacharacters, Continued

• Examples of use:

grep "hello" foo

grep "ˆhello" foo

grep "hello$" foo

grep "ˆhello$" foo

grep "h.llo" foo

grep "h\.llo" foo

CSCI 3194 October 29, 2014

Slide 7

Character Classes

• Character classes represent “one of these characters”.

Examples: [abcd] , [0-9]

• ˆ at the start of a list means “any character other than these”:

Example: [ˆabcd]

• Most tools define some shorthand:

Examples: \s for whitespace, [:alpha:] for letter

Slide 8

Character Classes, Continued

• Examples of use:

grep ’h[ae]llo’ foo

sed ’s/[A-Z]/!/g’ foo

sed ’s/[A-Za-z0-9]/!/g’ foo

sed ’s/[ˆA-Za-z0-9]/!/g’ foo

sed ’s/[[:alnum:]]/!/g’ foo

sed ’s/[ˆ[:print:]]/!/g’ foo

CSCI 3194 October 29, 2014

Slide 9

“OR” (Alternation)

• UNIX pipe symbol (|) separates alternatives. (Must escape in basic syntax.)

Example: cat|dog

• (What about AND? Usually don’t need it, or can get the same result another

way. For grep , pipe one grep into another.)

• Example of use:

grep ’cat\|dog’ foo

Slide 10

Quantifiers

• * means “preceding character (or group), zero or more times”.

Example: . *

• + means “preceding character/group, one or more times”. (Must escape in

basic syntax.)

Example: a+

• {N,M} means “preceding character/group, N to M times”. (Must escape

curly brackets in basic syntax.)

• Notice that quantifiers are “greedy” — match longest string possible.

• Examples of use:

sed ’s/[0-9]\+/NUMBERS/g’ foo

sed ’s/[0-9]\{2\}/NUMBERS/g’ foo

sed ’s/[0-9]\{1,4\}/NUMBERS/g’ foo

CSCI 3194 October 29, 2014

Slide 11

Grouping in Regular Expressions

• Use parentheses to group. (Must escape them in basic syntax.)

Example: (abc)(def)

Example: (abc) *

• Can then “backreference” groups, with \1 , \2 , etc.

Example: (abc)(. *)\1

• Examples of use:

sed ’s/\(hello\|bye\)\+//g’ foo

sed ’s/\(ˆ.\)\(. * \)/\2\1/’ foo

Slide 12

A Few More Tricks

• Angle brackets match beginning/end of word. (Must escape in basic syntax.)

Example: <hello>

(Notice that this doesn’t work on Mac OS X. Instead, one must use “character

classes” [[:<:]] and [[:>:]] .)

• Examples of use:

grep ’\<bye\>’ foo

CSCI 3194 October 29, 2014

Slide 13

Usage of Regular Expressions, Revisited

• Can use regular expression to search — grep , search in vi .

• Can also use them to modify — sed , search-and-replace in vi .

Backreferences can be useful here!

Example: s/\(\ˆ..\)\(. * \)/\2\1

• Examples of use:

sed ’s/\(.\+\) \(.\+\)/\2 \1/’ foo

Slide 14

Where to Learn More

• manand/or info pages for sed , grep ; info page for regex .

• Online help for vim .

• Books and online references/tutorials . . .

• Useful advice from vim ’s help:

Which of these should you use? Whichever one you can remember.

• There are also programs that offer a GUI-ish environment for trying things out.

Time permitting I will install one or more on the classroom/lab machines.

CSCI 3194 October 29, 2014

Slide 15

A Few More Things

• How to search for / replace a literal backslash? [\] works. \\ also works,

but to pass that to grep , it appears that you have to enclose the string in

single rather than double quotes.

• A student in a previous year pointed out that backslash does seem to have

different meanings in different contexts here. From the info page from

regex :
The ‘\’ character has one of four different meanings, depend ing on

the context in which you use it and what syntax bits are set (* note

Syntax Bits::). It can: 1) stand for itself, 2) quote the next

character, 3) introduce an operator, or 4) do nothing.

A bit strange, but in practice, I claim one can get used to it.

Slide 16

Minute Essay

• Try writing a regular expression that would match a “license plate” string of

the form “one uppercase letter, then two digits, then three uppercase letters”.

(Hint: Remember that [A-Z] matches one uppercase letter. Similar syntax

for digits.)

CSCI 3194 October 29, 2014

Slide 17

Minute Essay Answer

• A not-so-hard-to-remember answer:

[A-Z][0-9][0-9][A-Z][A-Z][A-Z]

