CSCI 3194 November 5, 2014

Administrivia

o Reminder: Homework 3 due today.

o Homework 4 on the Web. Due next week.

Slide 1

4)

Minute Essay From Last Lecture

e (Pretty much everyone got it. About half just did it the simple but slightly more

verbose way.)

Slide 2

CSCI 3194 November 5, 2014

The make Utility

e Motivation: Most programming languages allow you to compile programs in
pieces (“separate compilation”). This makes sense when working on a large
program — when you change something, just recompile parts that are

affected.

Slide 3 e Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

4)

Makefiles

e First step in using Mak e is to set up “makefile” describing how files that make
up your program (source, object, executable, etc.) depend on each other and
how to update the ones that are generated from others. Normally call this file

Makef il e ormakefil e.

Simple example on “sample programs” page.
Slide 4 p p ple prog pag

e When you type make, make figures out (based on files’ timestamps) which
files need to be recreated and how to recreate them.

CSCI 3194 November 5, 2014

Useful Command-Line Options

e make without parameters makes the first “target” in the makefile.
make f 00 makesf 00.

e make - njust tells you what commands would be executed — a “dry run”.

e make -f otherfil eusesot herfil e asthe makefile.

Slide 5
Defining Rules
o Define dependencies for a rule by giving, for each “target”, list of files it
depends on.
® Also give the list of commands to be used to recreate target.
NOTE!: Lines containing commands must start with a tab character. Alleged
Slide 6 paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but | just wanted to
do something quickly. By the time | wanted to change it, twelve (12)
people were already using it, and | didn’t want to disrupt so many
people.

CSCI 3194 November 5, 2014

Phony Targets

o Normally targets are files to create (e.g., executables), but they don’t have to
be. So you can package up other thingstodo ...
o Example — many makefiles contain code to clean up, e.g.:

cl ean:
Slide 7 -rm+.0 nain

Touse — make cl ean.

Variables in Makefiles

e You can also define variables, e.g.:
— List of object files needed to create an executable. Then use this list to
specify dependencies, command.

— Pathname for a command, options to be used for all compiles, etc.

Slide 8 e Example:

objs = main.o foo.o
CFLAGS = -Wall -pedantic
mai n: $(obj s)
gcc $(CFLAGS) -o main $(objs)

CSCI 3194 November 5, 2014

Predefined Implicit Rules

make already knows how to “make” some things — e.g., f 00 or f 00. 0
from f 00. C.

In applying these rules, it makes use of some variables, which you can

override.

Slide 9

A simple but useful makefile might just contain:
CFLAGS = -Wal |l -pedantic -O
e Or you could use

CFLAGS = -wal | -pedantic $(OPT)
OPT = -0

and then optionally override the - Oby saying, e.g., make OPT=-g f 00.

. J

Implicit Rules (Pattern Rules)

e You can define similar rules — e.g., a makefile to compile . C files using the
MPI C compiler:

MPI CC = /usr/ bin/mpicc
CCFLAGS = -O -Wall -pedantic

Slide 10 % % c
$(MPICC) -0 $@ $(CCFLAGS) $<

$<is the . c file here (first prerequisite), and $@s the target.

(Note that this is for GNU make. Non-GNU nake has a similar idea —

“suffix rules” — with slightly different syntax.)

CSCI 3194 November 5, 2014

Other Uses For nake

e nmake can be used to automate things other than compiling programs. It's

particularly useful for defining implicit rules.

Example: Makefiles to run | at ex and associated programs.

Slide 11
e Did you learn about makefiles in CSCI 1320? and/or have you used them
before?
e Are you able to keep up with the homework, or would it be helpful to extend
deadlines? We will have one more “real” assignment and then the project.
Slide 12

