
CSCI 3215 September 9, 2020

Slide 1

Administrivia

• My plan to teach class asynchronously Monday went awry. (My semester is

really not off to a good start! But there’s still time to improve.) Instead I plan to

record one more lecture for this week, for you to watch before next Monday.

To be available by Friday (I hope earlier); I’ll send e-mail.

• Homework 1 posted; due in a week.

• Notes on options for doing homework added to course Web site under “links”.

Slide 2

Files in Linux/UNIX — System Basics

• No notion of “drive letters” — all paths form a single hierarchy, with directory

/ as its root. (Try ls -l /.)

• A key underlying concept — “everything’s a file” (sequence of bytes).

Directories are files. Devices are represented as “special files”

(ls -l /dev). Many files are text, including configuration files. (Contrast

with Windows registry.) Some “files” are constructed on the fly by the O/S

(ls -l /proc).

• Removable media can be “mounted” (incorporated into the hierarchy) and

“unmounted”. Graphical environments may do this automatically when you

insert or remove, e.g., a USB drive.

• Windows/DOS “extensions” doesn’t really apply, though some commands and

some graphical programs do make use of filename suffixes.

1



CSCI 3215 September 9, 2020

Slide 3

Files in Linux/UNIX — User Basics

• We won’t review basic commands for navigating and manipulating the

filesystem, but you should if you’ve forgotten (cd, ls, cp, mv, rm, mkdir,

rmdir).

Slide 4

Files in Linux/UNIX — File Permissions

• Security model is simple but fairly flexible — rights (read, write, execute) for

owner, group, others; a few other bits that provide other things.

UNIX “groups” provide a way to share files among some but not all users.

Linux sets up a group for each user; sysadmins can set up additional groups

for, e.g., classes or research projects.

• r and w have obvious meanings; x means “can execute” for files, “can cd to”

for directories. Normally creating or removing files requires write access to

directory. (Makes sense in a way but may seem surprising.)

• chmod to change permissions. Old-style way is use 16-bit value (e.g.,

chmod 0777 foo to give all rights to everyone); newer syntax is

symbolic (e.g., chmod ugo+rwx foo). Can be applied recursively to

directory with -R.

2



CSCI 3215 September 9, 2020

Slide 5

Files in Linux/UNIX — File Permissions, Continued

• “Sticky” bit (symbolic name t):

Applies to directories only; means files can be removed only by owner

Example of use: tmp.

• “Set ID”” bits (set user ID and set group ID, symbolic name s):

Applies to files only; means program executes with the permissions of the

file/group owner.

Example of user: /usr/bin/passwd.

• chmod to change permissions. Old-style way is use 16-bit value (e.g.,

chmod 0777 foo to give all rights to everyone); newer syntax is

symbolic (e.g., chmod ugo+rwx foo). Can be applied recursively to

directory with -R.

Slide 6

Files in Linux/UNIX — Links

• “Links” (hard or soft) allow non-tree directory structure. (Analogous to

Windows short-cuts.)

• “Soft” (symbolic) link (ln -s) is just a special type of file pointing to another

file. Allows access through either name, but can “breaks” if pointed-to file isn’t

there.

• “Hard” (non-symbolic?) link (ln) only works within a filesystem but creates a

second directory entry to the same underlying file. File itself exists until all

(hard) links to it are gone.

3



CSCI 3215 September 9, 2020

Slide 7

Processes in Linux/UNIX

• A key concept in pretty much all operating systems is “process”, loosely

defined as one of a set of “concurrently executing” entities (users,

applications, etc.)

• Processes can spawn “child” processes. (This happens, e.g., every time the

shell runs a command!) Child process cannot change anything in parent (so,

e.g., if you cd in a script, it only affects the script, not the caller).

• Processes can have “environment variables”, which can be inherited by child

processes. Examples — USER, PATH.

• ps to see current process and its children. ps aux to see list of all

processes. (Marvel at how many!)

• Processes can be terminated with kill; kill -9 to do equivalent of

“force quit”.

Slide 8

Processes in Linux/UNIX and “Job Control”

• “The” shell (okay, there are several, but all that I know of) starts a new process

for each command. Normally runs “in the foreground” (of the login session).

• Or you can start it “in the background” by putting a & after the command. You

can also suspend the foreground process with ctrl-Z. (Useful if you want to get

back to a command prompt.) Restart a suspended process with fg, or put it

in the background with bg.

• Background and suspended processes get a number; show with jobs. Can

use this number with fg, bg, or kill.

4



CSCI 3215 September 9, 2020

Slide 9

Homeworks

• First homework is written problems. Some will be that, others programming.

E-mail me your answers (TMail address or the one with @cs). For written

problems please send me either plain text or PDF. I’ll convert to one of those

forms to grade anyway.

• You will also be asked for two more things:

– An explicit honor-code pledge and a statement about any collaboration or

help (if none, say so).

– A sentence or two reflecting on the assignment.

Slide 10

Minute Essay

• Questions?

5


