
CSCI 3215 September 16, 2019

Slide 1

Administrivia

• Reminder: Homework 1 due next Monday.

Slide 2

Minute Essay From Last Lecture

• Some people had made changes to their .bashrc files, some for specific

courses (no surprise).

• A people had made additions on their own. Interesting how in this course

people come in with very different backgrounds, some knowing quite a bit

more than others. “It’s all good”?

• Some weren’t quite sure! To find out, compare to /etc/skel/.bashrc.

1

CSCI 3215 September 16, 2019

Slide 3

Pipes and Filters, Recap/Revisited

• Pipes allow you to connect output of one program to input of another. (There

are also “named pipes” that work similarly and are persistent as opposed to

single-use.)

• They’re particularly attractive when combined with “filter” programs — and

UNIX has lots of them, some of which seem kind of silly except for how well

they work as building blocks.

Slide 4

Some Filters

• head, tail get first or last N lines.

• sort sorts, uniq discards (consecutive) duplicates.

• grep searches for text (or regular expression — more later).

(Name is from very old editor, where g/re/p meant “globally search for

regular expression and print”.)

• wc counts characters, words, lines.

• tr “translates”. Good for converting, e.g., upper-case to lower-case.

• cat “concatenates” one or more inputs to output.

• tee duplicates input. Good for capturing output to a file while also displaying

it onscreen.

2

CSCI 3215 September 16, 2019

Slide 5

Examples

• Find all processes that belong to your username:

ps aux | grep $USER

• Count lines in all C source files in current directory:

cat *.c | wc -l

• Show how much space each subdirectory of your home directory is using,

sorted by size.

du -sk $HOME/* | sort -n

(Unfortunately this omits directories starting with a dot.)

Slide 6

More Filters — sed

• sed (“stream editor”) is a non-interactive editor. By default does not edit in

place, but works as a filter, transforming input to produce output. Especially

useful with regular expressions (later), and in manipulating variables within a

command (later).

• Some simple uses on next slide, with command inline. For more complicated

edits, can put command(s) in a file.

3

CSCI 3215 September 16, 2019

Slide 7

Simple Examples of sed

• Search and replace:

sed ’s/old/new/g’ infile > outfile

• Delete lines containing some string:

sed ’/this/d’ infile > outfile

(How else could you do this?) (grep -v!)

Slide 8

More Filters — awk

• awk is an implementation of programming language AWK (“pattern scanning

and processing language”, (named after its inventors — as mentioned in its

man page).

• Lines of AWK program specify pattern and action. (Can also include function

definitions.)

• Basic processing: Split each line of input (“record”) into “fields”, compare to

patterns in program, execute actions for any patterns that match.

• Some simple uses on next slide, with command inline. As with sed, for more

complicated edits, can put command(s) in a file.

4

CSCI 3215 September 16, 2019

Slide 9

Examples of awk

• Print selected lines of input:

awk ’/this/’ infile

(How else could you do this?) (grep)

• Find all users who are running processes on the local machine:

ps aux | awk ’{ print $1 }’ | sort | uniq

• Generate a list of machines that are “up”:

ruptime | grep up | awk ’{print $1}’

(Unfortunately this omits some machines, such as the dias cluster — different

subnetwork.)

Slide 10

Still More Filters, and Other Useful Commands

• diff compares files or directories. (Useful in “regression testing” of

programs, together with I/O redirection.)

• xargs “builds and execute command lines from standard input”. My

standard(?) silly(?) example of the power of the command line:

ps aux | grep $USER | awk ’{print $2}’ | xargs kill

5

CSCI 3215 September 16, 2019

Slide 11

Still More Useful Commands — find

• Very powerful/flexible, though there are so many options you probably won’t

remember anywhere near all of them. man page is useful if daunting!

Simple examples:

• Find all files in the current directory and subdirectories modified in the last

week.

find . -mtime -7

• Find all files in your home directory and subdirectories whose name contains

hello.

find $HOME -name "*hello*"

(Double quotes are needed so shell doesn’t try to expand wildcard.)

Slide 12

find, A Bit More

• Summarizing and simplifying a bit from the man page, arguments to find

consist of paths, “options”, “tests”, “actions”, and “operators”.

• Path(s) come first — where you want to search.

• “options” are next and apply to whole command, e.g. -maxdepth.

• Then there are “tests” (search criteria), “actions” (what you want to do with

files that match — default is to print name), and “operators” (such as logical

and, or) connecting them.

Examples on next slides . . .

6

CSCI 3215 September 16, 2019

Slide 13

Examples of find

• Find all files in the current directory and subdirectories that end in .bak and

remove them.

find . -name "*.bak" -exec rm {} \;

Here, -name is a “test” and exec an “action”.

• As above, but prompt before executing each rm:

find . -name "*.bak" -ok rm {} \;

Here the “action” is -ok. (Might seem like you should be able to just use

rm -i, but that doesn’t work.)

Slide 14

More Examples of find

• Find files modified in last 24 hours and sort by modification time:

find . -mtime -1 -type f | xargs ls -lt

Here there are two “tests” (for time and type) and the default “action” (print),

and we pipe into xargs

• But the above also lists files in hidden directories .cache and .mozilla,

which we may not care about. To exclude them . . .

7

CSCI 3215 September 16, 2019

Slide 15

More Examples of find, continued

• . . . we could type

find . -name .cache -prune

-o -name .mozilla -prune

-o -mtime -1 -type f | xargs ls -ltd

(all on one line)

This has three test-plus-action clauses, connected by -o (logical or) — two to

tell find not to descend into directories we don’t want, plus one that selects

files we want.

(I use ls -ltd because the two “prune” clauses print the names of the

pruned directories, and without -d ls would print their contents.)

Slide 16

Shell Scripts

• What you type as input to a shell is a programming language, and a “shell

script” is just a program in this language.

• Normally, first line of script is #! (“hash bang”) followed by path for shell

(/bin/bash, e.g.), and the file is marked “executable” (with chmod). But

you can also execute commands in file anyfile via sh anyfile (or

bash anyfile).

• With the exception of the first line, lines starting with # are comments.

• (hello example.)

8

CSCI 3215 September 16, 2019

Slide 17

Shell Variables

• Define/assign variables with, e.g., myvar="hello". (Note absence of

spaces.)

• Reference with, e.g., $myvar.

• What’s the difference between these and “environment variables” already

mentioned? Shell variables are local to the shell, not passed on to child

processes. Distinction is somewhat blurred in Bourne shells. Convention is

that environment variable names are all caps.

Slide 18

Other Features

• What you type is a programming language, so in addition to variables it has

functions, condiional execution, and loops. More next time!

9

CSCI 3215 September 16, 2019

Slide 19

Minute Essay

• What command line could you use to count the number of aliases in your

.bashrc file?

Slide 20

Minute Essay Answer

• One possible answer:

grep alias .bashrc | wc -l

(You could add -w to grep — see man page for what that does.)

10

