
CSCI 3215 October 7, 2020

Slide 1

Administrivia

• Reminders: Homework 3 due today; Homework 4 due date changed to next

Wednesday (in deference to this being possibly a busy weekk?).

• Homework 5 coming soon (about today’s topic).

Slide 2

More Administrivia

• I’ve set up the Google Drive folders I’ve had in mind to use to communicate

grade information. (If you were in one of my classes this past spring — same

idea.)

• Folders are set up and shared. I didn’t notify when I shared, but you should

find the folder in GD’s “shared with me”, or search for a folder with name of

the form lastname, initial (a bit ugly but you probably can guess why I didn’t

want spaces — I have things set up to upload from a Linux directory, and

spaces in filenames . . . ).

• Right now folders contain only attendance-score reports; I’ll add more as I

grade, but this will let you see how this will work.

1



CSCI 3215 October 7, 2020

Slide 3

Minute Essay From Last Lecture

• Not a lot of replies yet, but interesting ones.

• I think a difficulty in using any old-style editor is if you use the standard GUI

keyboard a lot it’s hard not to. I had the opposite problem years ago trying to

learn enough MS Word to collaborate with colleagues. My Word documents

tended to have sequences of jjjjkl, and vi (yeah, not vim) beeped at

me a lot.

(I’m told you can become “bilingual” but it takes practice.)

Slide 4

Regular Expressions

• From an old Wikipedia definition:

A regular expression (abbreviated as regexp, regex or regxp) is a string

that describes or matches a set of strings, according to certain syntax

rules. Regular expressions are used by many text editors and utilities to

search and manipulate bodies of text based on certain patterns.

• Idea has roots in formal theory of languages, where the “languages” (sets of

strings) described by regular expressions are exactly the ones accepted by

finite state automata.

2



CSCI 3215 October 7, 2020

Slide 5

Regular Expressions and UNIX Tools

• Tools that use regular expressions include editors and also text-manipulation

commands such as grep and sed. Also supported in many programming

languages, especially (but not exclusively) ones for scripting (Perl, Python,

bash, etc.).

• This being UNIX, not all the tools accept exactly the same syntax. POSIX

defines two standards, “basic” and “extended”. Some tools/languages add

more. Simple stuff is very similar in all versions, fortunately. Key difference: In

basic syntax, must precede many special characters with “escape character”

(backslash).

Also notice that to keep shell from doing its thing with your regular

expressions (which generally you don’t want), must enclose in single or

double quotes. (Double quotes allow variable substitution; single quotes

don’t.)

Slide 6

Character Literals and Metacharacters

• Most characters represent themselves.

hello matches what?

• Other characters are “special” (metacharacters):

ˆ matches start of line

$ matches end of line

. matches any character (except newline)

To use these as regular character literals, “escape” with a backslash.

3



CSCI 3215 October 7, 2020

Slide 7

Character Classes

• Character classes represent “one of these characters”.

Examples: [abcd], [0-9]

• ˆ at the start of a list means “any character other than these”:

Example: [ˆabcd]

• Most tools define some shorthand:

Examples: \s for whitespace, [:alpha:] for letter

(This may be different for some tools in Mac OS X. Linux usually uses GNU

versions; Mac doesn’t.)

Slide 8

“OR” (Alternation)

• UNIX pipe symbol (|) separates alternatives. (Must escape in basic syntax.)

Example: cat|dog

• (What about AND? Usually don’t need it, or can get the same result another

way — e.g., for grep, pipe one grep into another.)

• Example of use:

grep ’cat\|dog’ foo

4



CSCI 3215 October 7, 2020

Slide 9

Quantifiers

• * means “preceding character (or group), zero or more times”.

Example: .*

• + means “preceding character/group, one or more times”. (Must escape in

basic syntax.)

Example: a+

• {N,M} means “preceding character/group, N to M times”. (Must escape

curly brackets in basic syntax.)

• Note that quantifiers are “greedy” — match longest string possible.

Slide 10

Grouping in Regular Expressions

• Use parentheses to group. (Must escape them in basic syntax.)

Example: (abc)(def)

Example: (abc)*

• Can then “backreference” groups, with \1, \2, etc.

Example:

sed ’s/\(\S\+\) \(\S\+\)/\2 \1/’ foo

5



CSCI 3215 October 7, 2020

Slide 11

A Few More Tricks

• Angle brackets match beginning/end of word. (Must escape in basic syntax.)

Example: <hello>

(Note that this may not work on Mac OS X. What worked the last time I

checked was “character classes” [[:<:]] and [[:>:]].)

• Examples of use:

grep ’\<bye\>’ foo

Slide 12

Usage of Regular Expressions, Revisited

• Can use regular expression to search — grep, search in vi.

• Can also use them to modify — sed, search-and-replace in vi.

Backreferences can be useful here!

6



CSCI 3215 October 7, 2020

Slide 13

Where to Learn More

• man and/or info pages for sed, grep; info page for regex.

• Online help for vim.

• Books and online references/tutorials . . .

• Often there’s more than one way to do something. Useful advice from vim’s

help:

Which of these should you use? Whichever one you can remember.

(In fact this is good advice in general, though it’s good to occasionally expand

the things you remember.)

• There are also programs that offer a GUI-ish environment for trying things out.

I haven’t tried one lately but they can be a help.

Slide 14

Minute Essay

• Try writing a regular expression that would match a “license plate” string of

the form “one uppercase letter, then two digits, then three uppercase letters”.

(Hint: Remember that [A-Z] matches one uppercase letter. Similar syntax

for digits.)

• Have you seen regular expressions in some other context? (Probably in Scala

and maybe C++?) Indeed, was anything today unfamiliar other than syntax?

7



CSCI 3215 October 7, 2020

Slide 15

Minute Essay Answer

• A not-so-hard-to-remember answer:

[A-Z][0-9][0-9][A-Z][A-Z][A-Z]

8


