
CSCI 3215 October 14, 2020

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 5 posted; due next Wednesday.

Slide 2

The make Utility

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

• (I think all of you have seen this, in CSCI 1120? but review.)

1



CSCI 3215 October 14, 2020

Slide 3

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example on “sample programs” page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 4

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile.

make foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.

2



CSCI 3215 October 14, 2020

Slide 5

Defining Rules

• Define dependencies for a rule by giving, for each “target”, list of files it

depends on.

• Also give the list of commands to be used to recreate target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.

Slide 6

Phony Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.

3



CSCI 3215 October 14, 2020

Slide 7

Variables in Makefiles

• You can also define variables, e.g.:

– List of object files needed to create an executable. Then use this list to

specify dependencies, command.

– Pathname for a command, options to be used for all compiles, etc.

• (Used in example.)

Slide 8

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• This can also make longer makefiles not as long. (Revised example.)

4



CSCI 3215 October 14, 2020

Slide 9

make — Overriding Variables at Runtime

• Something else that can be useful in makefiles is providing variables that can

be overridden at runtime. For example, if in the makefile you have

CFLAGS = -Wall -pedantic $(OPT)

OPT = -O

you can override $OPT with e.g., make OPT=-g foo.

Slide 10

Minute Essay

• Have you used make in other courses? (I seem to remember hearing that

Dr. Fogarty uses it in Functional maybe?)

5


