
CSCI 3215 November 13, 2020

Slide 1

Administrivia

• (None?)

Slide 2

Installing and Updating Software — Packages

• “Modern” way to package software for installation is as a “package”. Two

major forms: .rpm files (originated with RedHat), .deb files (originated

with Debian). Some distributions may use other forms.

• Key idea is that packages bundle up files, installation scripts, and dependency

information, and interact with a database representing what else is installed.

(Not a new idea — something similar existed in the mainframe world decades

ago!)

• Low-level tools for installing and querying individual packages exist — e.g.,

rpm command. (Can also use to create your own packages.)

1



CSCI 3215 November 13, 2020

Slide 3

Installing and Updating Software — Package Managers

• Still more convenient/recent: “Package manager” that uses the lower-level

tool(s) and also provides a way to download needed packages from one or

more “repositories” (standard sources — a distribution will often have its own,

possibly more than one, and system administrator can add others).

• If installing in “normal” system directories, and as root, probably best to take

this approach.

• If you want to install in other directories (e.g., your home directory), or you

don’t have root access, some packages allow that, or you can (probably?)

unpackage it. Or there’s the traditional UNIX approach . . .

Slide 4

Installing and Updating Software — “Tarballs”

• Traditionally, UNIX software distributed in the form of a “tarball” (archive

created by tar, possibly compressed, usually containing source). Still often

available and useful — e.g., to install in your home directory.

• What do you do with a tarball? Typical installation goes like this . . .

2



CSCI 3215 November 13, 2020

Slide 5

Installing and Updating Software — Installation from
“Tarball”

• “Untar” the file (tar xf — for files ending in .tar). (May need to add a

flag to uncompress. Several choices. E.g., Filename ending in .tgz uses

old-style compression; untar with tar xzf.) Usually creates a directory,

often containing README and/or INSTALL files — which you should

review.

• Run configure script to set system-specific options.

configure --help will (usually?) list them. Usually figures most

things out for itself, but may need/allow user input, either via command-line

options or standard input. (This is where you typically say where you want to

install, via --prefix.)

Builds makefile(s).

Slide 6

Installing and Updating Software — Installation from
“Tarball”, Continued

• Run make to compile, etc. Normally puts created files in the same directory.

Optionally, run make check (if available) to do some testing. Some errors

considered normal.

• Run make install to move/copy executables, etc., to system

directories. Note — only step that requires root privileges, and only if

installing in system directories.

3



CSCI 3215 November 13, 2020

Slide 7

Digression: Text Editors Revisited

• Some text editors (vim among them) allow you to “filter” text through an

external program.

• One thing this allows is building on-the-fly scripts — construct in vim the

lines to execute, then execute them with, e.g., :%!sh. (No need to save

unless you want to reuse another time.)

Slide 8

On-the-fly Scripts, Continued

• I like this “on-the-fly scripting” for various kinds of file moving/renaming

operations — use r!ls to get a list of files, “massage” with various editing

operations, then execute as above. I find this works well as a way of dealing

with filenames containing spaces — relatively easy to add double quotes

around names. A useful idiom employs a simple regex and & to reference the

matched text, e.g.,

:%s/.*/mv -v "&" targetdir/

• (Of course I could also use a bash loop, and sometimes I do, but —

whatever seems easiest for the particular use case?)

4



CSCI 3215 November 13, 2020

Slide 9

Text Editors Revisited, Continued

• I also use vim’s ability to record and play back “macros” fairly regularly. To

do this: Start recording with q plus a single letter. End with another q. Play

back with @ and the single letter.

(Somewhere sometime I think I remember a comment to the effect that with

regard to certain repetitive tasks there were two kinds of people — the ones

who write macros and the ones who write a regular expression. I do both,

depending on the situation.)

• It can be tricky to record in a way that will “play back” effectively, but when this

works, it works well.

• I use this sometimes when I need to make the same edit to several files.

Slide 10

Minute Essay

• Do you have experience with any of the installation tools just discussed? Or

have you used other ways of installing software on UNIX-like systems?

(What?)

5


