
CSCI 3215 September 14, 2022

Slide 1

Administrivia

• Reminder: Reading quiz due today. 11:59pm.

• Next reading quiz coming soon, and/or also homework.

Slide 2

Processes in Linux/UNIX

• A key concept in pretty much all operating systems is “process”, loosely

defined as one of a set of “concurrently executing” entities (users,

applications, etc.)

• Processes can spawn “child” processes. (This happens, e.g., every time the

shell runs a command!) Child process cannot change anything in parent (so,

e.g., if you cd in a script, it only affects the script, not the caller).

• Processes can have “environment variables”, which can be inherited by child

processes. Examples — USER, PATH.

• ps to see current process and its children. ps aux to see list of all

processes. (Marvel at how many!)

• Processes can be terminated with kill; kill -9 to do equivalent of

“force quit”.

1

CSCI 3215 September 14, 2022

Slide 3

Processes in Linux/UNIX and “Job Control”

• “The” shell (okay, there are several, but all that I know of) starts a new process

for each command. Normally runs “in the foreground” (of the login session).

• Or you can start it “in the background” by putting a & after the command. You

can also suspend the foreground process with ctrl-Z. (Useful if you want to get

back to a command prompt.) Restart a suspended process with fg, or put it

in the background with bg.

• Background and suspended processes get a number; show with jobs. Can

use this number with fg, bg, or kill.

• I think a lot of this functionality goes back to the days when for many people

using UNIX meant logging into a shared mainframe or “minicomputer” from a

text terminal. In that environment, you don’t just open a second terminal

window, so ways to do multitasking from a single terminal were attractive. Still

(I think!) have their uses.

Slide 4

Starting a Shell

• From the console, type ctrl-alt-Fn, where n is . . .

Well, it used to be 1 through 6, with the graphical console accessible via

ctrl-alt-F7. Now graphical consoles start at ctrl-alt-F1 (can be more than one if

more than one user logged in), and the virtual consoles start at ctrl-alt-F2 or

later, up through ctrl-alt-F6.

• From a graphical environment, start a “terminal” (a.k.a. terminal window,

terminal session, etc.).

• From a Windows system, run putty.

• Log in remotely with ssh.

2

CSCI 3215 September 14, 2022

Slide 5

A Little About Shells

• Several choices; most commonly used are probably bash and tcsh.

(There are others! This is UNIX. zsh and ksh are two I’ve heard of.)

By default, you get the one in your entry in the password file.

• How to find out what that is? echo $SHELL. (This displays the

environment variable SHELL. More about those later.)

• How to change? chsh command on some systems; on others, can only be

changed by administrator.

Or start a different one by typing its name, like any other command.

• Following discussion is about bash, but many other shells offer similar

functionality.

Slide 6

What Your Shell Does With What You Type — Overview

• Shell provides in-place editing (arrow and other keys), command history, tab

completion of filenames, etc. — until you press “return”.

• Shell then processes command line — expands wildcards and references to

variables, “tokenizes” command into commandname and parameters.

• Shell then either processes command (if a builtin), or locates executable in

“search path” (PATH environment variable) and forks off a new process.

• Command’s return code then available via shell variable.

3

CSCI 3215 September 14, 2022

Slide 7

What bash Does With What You Type — In-Place

Editing

• Simple editing — left and right arrows; ctrl-a, ctrl-e, etc. Also ctrl-u for “line

kill” and ctrl-k for “delete to end of line”.

• Command history — move forward/back with up and down arrows, search

with ctrl-r.

• Tab completion — for filenames, command names, etc. (Press tab key twice

to show choices, if more than one.) (Some shells also have programmable

tab completion. In this year’s build, bash does, and it’s slightly different from

the previous build.) (Do a Web search on “bash completion” to learn more.)

• Read about bash and/or readline — man and info pages for more

info. (If you ever write a program that needs command-line functionality,

readline library is useful.)

Slide 8

What bash Does With What You Type — Processing
Command Line

• Shell takes completed line and expands filename wildcards, references to

variables (more about both in next slides), “tokenizes” command into

commandname and parameters, splitting (by default) at whitespace.

• If that’s not what you want — e.g., to include a space in a filename, inhibit

expansion of filename wildcards, etc. — use escape character (backslash) or

quotes. Single quotes inhibit all of this, double quotes all but variable

substitution.

4

CSCI 3215 September 14, 2022

Slide 9

What bash Does With What You Type — Processing
Command Line

• Shell locates command. Two cases:

– Builtin command — shell executes directly.

– External command — shell finds an executable by looking in “search path”

(PATH environment variable) and forks off a new process.

(Why the distinction? Some things can’t reasonably by done in a new (“child”)

process!)

(This ignores aliases and shell functions. More soon!)

• Command’s return code then available via shell variable $?.

(Why would anyone care? Useful in writing scripts.)

(Where does the return code come from? whatever is returned by program —

e.g., from C program’s main.)

Slide 10

What bash Does With What You Type — Special Keys

• Notice that some keys have meanings other than what many users are used

to:

• ctrl-c interrupts current process (technically, sends it a particular signal).

• ctrl-d signals “end of file” for input from keyboard. Can use this is programs

that read from stdin. In a shell, means “exit”, though you can override this.

• ctrl-s may “lock” input and output until ctrl-q is entered. Depends on terminal

emulator. Useful to know if it ever happens!

• ctrl-z suspends current process.

5

CSCI 3215 September 14, 2022

Slide 11

Environment Variables

• Associated with a process (e.g., a shell) there can be “environment variables”.

Useful as another way (in addition to command-line arguments, input from

file/keyboard, etc.) of giving process information.

• Some variables of interest — PATH, SHELL, HOME, USER.

• To display current value, printenv FOO or echo $FOO.

• To set value, FOO=value (no spaces) in bash.

• To make value available to child processes, export FOO.

Slide 12

Filename Expansion

• You probably already know about using * as a wildcard for specifying one or

more files. Other options too — “filename expansion” section in full bash

manual or info pages.

• echo can be used to check what a particular expression expands to.

6

CSCI 3215 September 14, 2022

Slide 13

Another bash Feature — Directory Stack

• bash maintains a stack of directories. Use commands pushd, popd,

dirs to manipulate it.

• Very useful (I think!) if you want to navigate from one deeply-nested

subdirectory to another without losing your place.

Slide 14

Minute Essay

• I’ve missed kind of a lot of classes. I was going to try to record some extra

make-up lectures, but I’m not sure that makes sense — might be better to just

move on. Thoughts?

7

