
CSCI 3215 October 3, 2022

Slide 1

Administrivia

• As noted in e-mail, reading quiz 1 graded and sample solution and grades

uploaded. I was generous with points, so I say worth looking at sample

solution even if you did well.

• Reminder: Reading Quiz 3 due today; Homework 1 due end of the week.

• More assignments coming soon.

Slide 2

Shell Input as a Programming Language and Shell
Scripts

• What bash understands is in a sense a programming language, with the

shell as its interpreter:

– Variables (usually untyped).

– Expressions (arithmetic and logical).

– Conditionals (if/then/else) and loops.

– Functions.

• I’ll talk about bash, but most shells provide similar functionality, just

sometimes with different syntax.

1

CSCI 3215 October 3, 2022

Slide 3

Shell Input as a Programming Language — the Good

• Interactive shells are a kind of REPL (read, evaluate, print loop) for the shell’s

language. So you can use the various features interactively or use them to

write “scripts” — in the same way you can test out ideas in Scala’s REPL and

then use them in programs (except that Scala’s REPL is mostly useful for

testing/development, whereas using shell features such as loops interactively

can be useful).

• Any UNIX/Linux system will have a shell of some sort, I think always one that

supports basic sh functionality, while which “real” programming languages

are available might vary.

Slide 4

Shell Input as a Programming Language — the Bad

• Writing portable scripts is tough. Sticking to the sh subset of bash helps, as

does avoiding GNU-only commands and extensions, but how to do that —

yeah well. (It’s a little like writing portable C.)

• What you can do is somewhat limited, and scripts of any size are apt to be

ugly.

• Advice: For long and complex scripts, a scripting language such as Perl or

Python may be a better choice than a shell script.

2

CSCI 3215 October 3, 2022

Slide 5

Shell Input as a Programming Language — the Ugly

• Dealing with spaces (in filenames, e.g.) is a huge pain. Rules for quoting are

tricky, and sometimes it seems the only way to get it right is to just try things

until something works. (Yuck!)

• There are many weirdnesses having to do with when subshells are created,

for example the behavior of while and shell variables (more later).

Slide 6

Shell Scripts

• A “shell script” is just a sequence of things you could type at the shell prompt,

collected in a (text) file.

• Normally, first line of script is #! (“hash bang”) followed by path for shell

(/bin/bash, e.g.), and the file is marked “executable” (with chmod). But

you can also execute commands in file anyfile (even if not marked

executable) via sh anyfile (or bash anyfile).

• With the exception of the first line, lines starting with # are comments.

• (hello example.)

3

CSCI 3215 October 3, 2022

Slide 7

Shell Variables

• Define/assign variables with, e.g., myvar="hello". (Notice absence of

spaces.)

• Reference with, e.g., $myvar.

• What’s the difference between these and “environment variables” already

mentioned? Shell variables are local to the shell, not passed on to child

processes. Environment variables are (potentially) available to child

processes. Distinction is somewhat blurred in Bourne shells. Convention is

that environment variable names are all caps.

Slide 8

Shell Functions and Parameters

• Define functions as described previously(?) — name, parentheses, then

function definition in curly brackets. Separate/end commands with ; or

newlines. Can precede with function.

• Parameters for functions and shell scripts are positional — $0 for script

name, then $1, etc. (much like arguments to C program). $* is a list of all

parameters; $# is the count of parameters, not including $0.

• Call functions or shell scripts by giving name and then parameters, separated

by whitespace. (If a parameter should include whitespace, use quoting or

escape characters.)

4

CSCI 3215 October 3, 2022

Slide 9

Shell Functions and Parameters, Continued

• fcn-example example.

• Note that you can do this interactively too! a feature I often find useful.

Slide 10

Command Substitution

• Can “inline” output of one command as parameters of another. Old style uses

backquotes, e.g.:

vim ‘find . -name "*.c"‘

(Note that these are backquotes, not single quotes!)

Or use newer bash syntax

vim $(find . -name "*.c")

(Much easier to nest!)

• The “inlined” command can even be a pipeline. Example:

ls -ld $(echo $PATH | sed ’s/:/ /g’)

5

CSCI 3215 October 3, 2022

Slide 11

Two More Useful Commands

• basename and dirname split up pathname into “base” (last level of path)

and rest of path.

• Very helpful in combination with command substitution, especially in scripts.

Slide 12

Conditionals and Loops

• (Next time.)

6

CSCI 3215 October 3, 2022

Slide 13

Minute Essay

• Questions?

7

