
CSCI 3291 October 11, 2004

Slide 1

Administrivia

• Homework 3 on Web soon. Will consist of applying updates and (I think)

compiling a new kernel. (Comments?)

Slide 2

Kernels

• In general (as taught in o/s courses), the job of the operating system is to

– Provide “virtual machine” abstractions — processes, filesystems, etc.

– Manage hardware resources on behalf of user programs.

• Kernel is heart of o/s — the part that’s always loaded (in virtual memory

anyway). Responsible for many system activities:

– Managing processes (timesharing, address-space protection).

– Providing interprocess communication (signals and semaphores, pipes).

– Implementing virtual memory (paging, swapping, etc.).

– Managing filesystems.



CSCI 3291 October 11, 2004

Slide 3

Device Drivers

• At lowest level, communicating with I/O devices is full of complicated and

device-specific details.

Big, big gap between these details and the application-program view of I/O

(e.g., “read 10 bytes from file Z”).

• Most o/s’s bridge this gap with several “layers of abstraction”.

• Lowest level of abstraction — “device driver” — encapsulates details of

communicating with specific device, allows kernel to do I/O in terms such as

“read block 200 from device 3”.

• Can be incorporated into kernel, or loaded dynamically.

Slide 4

Configuring/Recompiling the Kernel

• Why would you want to?

– For some systems, only way to get exactly the right set of device drivers /

options.

(In the old days of mainframes, had to perform “system generation”

(sysgen), specifying all kinds of details about I/O configuration.)

– As an efficiency measure — so unneeded drivers and options aren’t

included.

• How do you do it? Details vary among versions of Unix. For Linux, steps are

all packaged as makefile in /usr/src/linux*. First make

xconfig (creates a .config file specifying options), then make other

targets to create kernel, loadable modules, etc., and copy to appropriate

directories. (Of course, it’s sensible not to overwrite old files until you know

the new ones work!)



CSCI 3291 October 11, 2004

Slide 5

Tuning the Kernel

• Some systems also let you set some kernel parameters (e.g., maximum

number of open files a process can have) “on the fly”. Details vary among

versions of Unix. For Linux, many are set by overwriting files in /proc. To

do this “permanently”, must add the overwrite commands to startup scripts

(more about that later).

• (Aside: /proc filesystem is a sort of phony filesystem allowing you to

examine/change o/s data structures. Take a look sometime!)

Slide 6

Device Drivers, Continued

• A key Unix principle — “everything’s a file”. So, (non-network) devices are

represented as “files” in /dev. Two basic types, block and character.

Associated with each — major and minor device numbers.

• Device drivers translate generic I/O operations (read, write, open, probe, etc.)

into device-specific details. How? Each driver contains some or all

corresponding functions; o/s figures out whose version of, e.g., read to call

based on device number, etc.

(Usually drivers “drive” actual I/O hardware, but not always — e.g.,

pseudo-TTY emulates old-time terminals, so programs written for them still

work.)

• For Linux, source for drivers can be found in

/usr/src/linux*/drivers.

• How to add a device driver? Details depend on version of Unix. Seems to be



CSCI 3291 October 11, 2004

Slide 7

easy for Solaris, complicated for Linux.

Slide 8

Loadable Kernel Modules

• Idea is to allow adding/removing kernel services (such as device drivers)

without recompiling kernel. Support for this varies among versions of Unix;

very good in Solaris, okay in Linux, etc.

• For Linux, lsmod lists currently loaded modules. insmod to add, rmmod

to remove, modprobe to add/remove in a way that deals with

dependencies, pre- and post- stuff.



CSCI 3291 October 11, 2004

Slide 9

Booting the System

• “Boot” is short for . . . ?

(Some of the old mainframes called it something else — e.g., IPL (initial

program load). More descriptive, but less colorful?)

• First step is for ROM/BIOS to read boot record from device being booted from

— contains a small program that then loads the rest of the kernel. Not part of

Unix, so details vary from system to system.

• Kernel then initializes itself, including checking how much memory is

available, what hardware is present.

• (Continued on next slide . . . )

Slide 10

Booting the System, Continued

• Kernel creates “spontaneous” processes. Details vary from one version to

another. For Linux, includes init and various handlers (e.g., kswapd).

• init process then mounts and initializes filesystems (performing fsck if

needed).

• init executes startup shell scripts, which bring up (most of) the rest of the

system. More later.

• All versions allow booting in normal mode or “single-user” mode. In

single-user mode, more of what happens must/can be done manually. The

single user is root, and some systems don’t require you to supply a password

to log in. Helpful if you forget the root password, but clearly some risk!



CSCI 3291 October 11, 2004

Slide 11

Boot Loaders Revisited

• On PC hardware, MBR contains program that loads “second-stage boot

loader” from selected disk partition, which then loads the rest . . .

• For Linux systems, boot loaders include lilo and grub. Both make

possible multiboot systems. To change options/configuration, must edit

appropriate file and then reinstall boot loader.

Slide 12

Startup Scripts

• Kernel initialization starts up only a very few necessary services. Everything

else is started by running “startup scripts” — normal shell scripts, kept in

some location that (of course!) varies among versions of Unix.

These days, most configuration changes are made not by actually changing

these scripts but by changing the configuration files they read.

• In version of Unix based on (AT&T System V), there’s a notion of “run levels”

(1 is single-user, 2 through 5 are multi-user — e.g., on Linux, 3 is multi-user

but no X, 5 is multi-user with X). /etc/inittab defines (some of) what

happens at various levels.

• Startup scripts then live in init.d directory, usually in /etc. Each is

responsible for one daemon (persistent background process) or other part of

the system. All must accept start and stop parameters; some also allow

restart. (Root can use these scripts to stop/start/restart things.) Which

ones are run? Defined in /etc/rc.d and subdirectories.



CSCI 3291 October 11, 2004

Slide 13

Startup Scripts, Continued

• Many scripts use configuration files, often also in /etc. Details vary from

version to version, and even from Linux distribution to distribution. For

RedHat-based distributions, many things in /etc/sysconfig directory.

(E.g., this is where information about networking is kept.)

Slide 14

Shutting Down

• No surprise — just turning off the power is not a good idea, since much

filesystem info is cached and needs to be written out to disk.

• Several methods for graceful shutdown — shutdown, halt, reboot.

Also may be options from graphical login screen.

• Can also change runlevel with init command. E.g., init 3 (on Linux)

shuts down X. init 5 to start it up again.



CSCI 3291 October 11, 2004

Slide 15

Minute Essay

• None — sign in.


