
CSCI 3294 February 7, 2005

Slide 1

Administrivia

• None.

Slide 2

Minute Essay From Last Lecture

• What are your goals?

Many answers, most pretty much in line with my ideas about the course.

Interesting answer:

“I don’t even know what I don’t know.”

One of my goals is to give you an idea of what things are possible . . .

CSCI 3294 February 7, 2005

Slide 3

A Little About Processes

• Another key concept — process as one of a set of “concurrently executing”

entities (users, applications, etc.)

• Things to note:

– Processes can spawn “child” processes. (This happens, e.g., every time

the shell runs a command.)

– Processes can have “environment variables”, inherited by child processes.

Examples — USER, PATH.

Slide 4

A Little (More) About Shells

• As noted earlier — when you’re typing in a text window, you’re likely talking to

a “shell”.

• “Which shell am I using?” can usually find out with echo $SHELL.

How to change? On many Unix systems, chsh command. (On some, must

be done by sysadmin.)

• In general — to display an environment variable, echo $ITSNAME. To set

— depends on shell; for bash, ITSNAME=newvalue. export makes

available to other programs.

CSCI 3294 February 7, 2005

Slide 5

What Your Shell Does With What You Type

• Shell provides in-place editing arrow and other keys, command history, tab

completion of filenames, etc. — until you press “return”.

For bash, you probably know about up and down arrows and tab completion

for filenames. Tab completion works on commands too, and you can search

the command history with ctl-R.

• Shell then processes command line — expands wildcards and references to

variables, “tokenizes” command into commandname and parameters.

Notice — if a parameter needs to include a space, must either “escape”

(precede with a space) or enclose in single/double quotes.

• Shell locates command in “search path” (PATH environment variable) and

forks off a new process.

• Command’s return code then available via shell variable.

Slide 6

What Your Shell Does With What You Type, Continued

• Notice that some keys have meanings other than what Windows users are

used to — ctrl-C, ctrl-D, ctrl-Z, possibly also ctrl-S, ctrl-Q.

CSCI 3294 February 7, 2005

Slide 7

Shell Customizations

• At startup, shell reads in various configuration files (see man page for

details). At least one will be in your home directory (.bashrc for bash).

• In these files, you can

– Define/redefine environment variables (e.g., PATH, PS1). For bash, be

sure to export them. Can define new ones (I find this useful).

– Define aliases/functions (more on next slide).

• Caution: The default setup on our lab machines is somewhat elaborate. Goal

is to have things work right on all environments — Linux (currently FC2), but

also Mac OS X. Look at ˜defaults/system/SYSTEM.bashrc for

details.

Slide 8

Shell Customizations — Aliases and Functions (bash)

• Aliases are simple substitution, no parameters. E.g.

alias lt=’ls -ltF’

alias google=’lynx http://www.google.com’

• Functions can have positional parameters. E.g.,

function cd-and-show() { cd $1 ; pwd ; ls; }

CSCI 3294 February 7, 2005

Slide 9

Processes and “Job Control”

• Normally, command you type is a “foreground process”. Append &, though,

and you get a “background process”.

• Can make a foreground process a background process, and vice versa (fg

and bg commands; jobs command).

• Can even run commands in “batch” mode (batch command).

Slide 10

I/O Redirection

• In programming classes I talk about “reading from standard input” (stdin)

rather than “reading from the keyboard”. Why?

How about stdout, stderr?

• stdin can come from keyboard, file, or inline in shell script. stdout and

stderr can go to terminal or file (overwrite or append), separately or

together. (Syntax depends in part on which shell you’re using.)

• How is this useful? (e.g., in program development? testing?)

• OR — remember quotation from last time?

“Write programs that do one thing and do it well. Write programs to work

together. Write programs to handle text streams, because that is a universal

interface.”

CSCI 3294 February 7, 2005

Slide 11

Pipes

• “Pipes” provide one-way communication between programs — output of

program A becomes input of program B.

• Key component of “the Unix philosophy” — emphasis on providing a toolkit of

small programs, mechanisms for combining them.

• “Filters” are programs designed to work this way: sort, head, wc, sed,

awk, and too many others to name.

Other programs that fit in well — more, less, grep.

Slide 12

Filters

• Some commonly-used filters:

head tail

sort uniq

grep wc

cut paste

tr expand

awk sed

• Use these in combination with, e.g., ps, ls.

CSCI 3294 February 7, 2005

Slide 13

Examples

• Find all processes that belong to your username.

(ps aux | grep $USER)

• Find all users who are running processes on the system.

(ps aux | awk ’{ print $1 }’ | sort | uniq)

• Generate a list of machines that are “up”.

(ruptime | grep up | awk ’{ print $1 }’)

• Show how much space each subdirectory of your home directory is using,

sorted by size.

(du -sk $HOME/* | sort -n)

Slide 14

Minute Essay

• What command could you use to find all aliases defined in your .bashrc

file and print them out in sorted order?

CSCI 3294 February 7, 2005

Slide 15

Minute Essay Answer

• One possible answer:

grep alias .bashrc | sort

