
CSCI 3294 February 21, 2005

Slide 1

Administrivia

• None.

Slide 2

Recap — Topics So Far

• UNIX philosophy — lots of little programs that cooperate.

• A little about files — “everything’s a file” (including devices, e.g.); security

model.

• A little about processes — one gets started for every command you run;

environment variables; foreground and background processes.

• Some stuff about shells — what they do with what you type in; shell

customizations (including aliases and functions); I/O redirection.

• Pipes; filter programs.



CSCI 3294 February 21, 2005

Slide 3

Filters — Review / A Bit More

• head, tail.

• sort, uniq.

• grep — search for text (or regular expression — more later).

• wc — count characters, words, lines.

• tr — “translate”. Good for converting, e.g., upper-case to lower-case.

Slide 4

Filters, Continued

• sed — “stream editor”. Example — convert DOS/Windows-style text file

(each line ends with \r\n) to UNIX-style (each line ends with \n).

• awk — “pattern scanning and processing language” — many interesting

possibilities; simplest is just to break up input into whitespace-delimited fields.



CSCI 3294 February 21, 2005

Slide 5

More Useful Commands

• find. Very powerful/flexible, though if you don’t use it often you probably will

have to read the man page to remember syntax. Examples:

– Find all files in the current directory created in the last week.

(find . -mtime -7)

– Find all files in your home directory whose name contains hello.

(find $HOME -name "*hello*")

– Find all files in the current directory that end in .bak and apply rm -i

to them.

(find . -name "*.bak" -exec rm -i {} \;)

Slide 6

More Useful Commands, Continued

• diff.

• xargs. Example:

– Find all processes for program xcpustate and kill them:

(ps aux | grep xcpustate | awk ’{ print $2 }’
| xargs kill)



CSCI 3294 February 21, 2005

Slide 7

Shell Input as a Programming Language

• What bash understands is in a sense a programming language, with the

shell as its interpreter:

– Variables (untyped).

– Expressions (arithmetic and logical).

– Conditionals (if/then/else) and loops.

– Functions.

• Can be used interactively, or collected into “scripts”.

• I will talk about bash, but most shells provide similar functionality, just

sometimes with different syntax. If you want to write scripts portable to most

Unix systems, probably best to stick to sh subset of bash.

Slide 8

Shell Scripts

• A “shell script” is just a sequence of things you could type at the shell prompt,

collected in a (text) file.

• Normally, first line of script is #! followed by path for shell (/bin/bash,

e.g.), and the file is marked “executable” (with chmod). But you can also

execute commands in file anyfile via bash anyfile.

• With the exception of the first line, lines starting with # are comments.



CSCI 3294 February 21, 2005

Slide 9

Shell Variables

• Define/assign variables with, e.g., myvar="hello". (Notice absence of

spaces.)

• Reference with, e.g., $myvar.

Slide 10

Quoting and Escape Characters

• Normally bash breaks input into “words” based on whitespace, expands

wildcards, performs variable substitutions (e.g., $HOME), and a fair amount of

other stuff.

• When that’s not what you want:

– Precede “special” characters with escape character (backslash).

– Use double quotes to inhibit all of the above except variable substitution.

– Use single quotes to inhibit all of the above.



CSCI 3294 February 21, 2005

Slide 11

Command Substitution

• Can “inline” output of one command as parameters of another using

backquotes. Example:

vim ‘find . -name "*.c"‘

• The “inlined” command can even be a pipeline. Example:

ls -ld ‘echo $PATH | sed ’s/:/ /g’‘

Slide 12

Shell Functions and Parameters

• Define functions as described last time — function followed by name,

parentheses, then function definition in curly brackets. Separate/end

commands with ; or newlines.

• Parameters for functions and shell scripts are positional — $0 for function

name, then $1, etc. $* is a list of all parameters; $# is the count of

parameters, not including $0.

• Call functions or shell scripts by giving name and then parameters, separated

by whitespace. (If a parameter should include whitespace, use quoting or

escape characters.)



CSCI 3294 February 21, 2005

Slide 13

Conditionals and Loops

• Basic syntax for if/then/else:

if command

then list-of-commands

else list-of-commands

fi

Which branch is taken depends on return code from command after if — 0

considered “true”, other values “false”.

• Basic syntax for while loops:

while command

do list-of-commands

done

Continues until return code from command after while is non-zero.

Slide 14

Conditionals and Loops, Continued

• Basic syntax for for loops:

for var in list-of-values

do list-of-commands

done

• Other constructs include case (like C switch), until.



CSCI 3294 February 21, 2005

Slide 15

Useful Commands for Conditions, Loops, Etc.

• Probably the most common for conditions is test. Many options. Example:

if [ -z "$1" ]

then echo Usage: ‘basename $0‘ someparameter; exit

fi

• For lists/loops, seq, wildcards, and command substitution are good.

Examples:

for n in ‘seq -w 0 21‘

do echo Xena$n

done

for f in ‘ls $HOME‘

do du -sh $HOME/$f

done

Slide 16

Arithmetic

• Most basic/portable way probably expr. Example: n=‘expr $n + 1‘.

• In bash, can also use double parentheses. Example: n=$((n + 1)).



CSCI 3294 February 21, 2005

Slide 17

Reading from Standard Input

• To read from shell’s / script’s standard input: read. Example:

echo "Do you really want to do this? (y/n)"

read ans

if [ ".$ans" = ".y" ] ....

Slide 18

“Here” documents

• We talked about redirecting input and output. One more option for input,

useful in scripts, is to get it from the script itself — “here” document. Example:

#!/bin/sh

mail -s "a subject" bmassing << EOF

hello

I am here

who are you?

is this fun?

EOF



CSCI 3294 February 21, 2005

Slide 19

A Few More Useful Things

• pushd / popd — manipulate stack of directories.

• getopt — process command-line options.

Slide 20

Minute Essay

• The command ping -c 1 Janus00 will test to see if Janus00 is

network-reachable. Write a few lines of bash input that would let you “ping”

all the Janus machines.



CSCI 3294 February 21, 2005

Slide 21

Minute Essay Answer

• One possible answer:

for n in ‘seq -w 0 21‘

do

ping -c 1 Janus$n

done


