
CSCI 3294 March 21, 2005

Slide 1

Administrivia

• As noted in e-mail before the break: Schedule page now has links to readings

for all topics except today, homeworks 1 through 4.

• “Sample programs” page, “useful links” pages updated.

Slide 2

Minute Essay From Last Lecture

• Question: What text editor do you currently use under Linux? What do you

like/dislike about it?

• Answers: Almost unanimously — vim (with one vote for gedit, one

mention of IDEs). Consensus — simple/compact but gets the job done.



CSCI 3294 March 21, 2005

Slide 3

Regular Expressions

• From Wikipedia definition:

A regular expression (abbreviated as regexp, regex or regxp) is a string

that describes or matches a set of strings, according to certain syntax

rules. Regular expressions are used by many text editors and utilities to

search and manipulate bodies of text based on certain patterns.

• Idea has roots in formal theory of languages, where the “languages” (sets of

strings) described by regular expressions are exactly the ones accepted by

finite state automata.

Slide 4

Regular Expressions and Unix Tools

• Tools that use regular expressions include editors and also text-manipulation

commands such as grep and sed. Also supported in many programming

languages, especially ones for scripting (Perl, Python, bash, etc.).

• This being Unix, not all the tools accept exactly the same syntax. POSIX

defines two standards, “basic” and “extended”. Some tools/languages add

more. Simple stuff is very similar in all versions, fortunately. Key difference —

in basic syntax, must precede many special characters with “escape

character” (backslash).

Also notice that to keep shell from doing its thing with your regular

expressions (which generally you don’t want), must enclose in single or

double quotes.



CSCI 3294 March 21, 2005

Slide 5

Character Literals and Metacharacters

• Most characters represent themselves.

hello matches what?

• Other characters are “special” (metacharacters):

ˆ matches start of line

$ matches end of line

. matches any character (except newline)

To use these as regular character literals, “escape” with a backslash.

Example: \.5

Slide 6

Character Classes

• Character classes represent “one of these characters”.

Examples: [abcd], [0-9]

• ˆ at the start of a list means “any character other than these”:

Example: [ˆabcd]

• Most tools define some shorthand:

Example: \s for whitespace

Example: [:alpha:] for letter

Example of use: [ˆ[:print:]]



CSCI 3294 March 21, 2005

Slide 7

“OR” (Alternation)

• Unix pipe symbol (|) separates alternatives. (Must escape in basic syntax.)

Example: cat|dog

• (What about AND? Usually don’t need it, or can get the same result another

way. For grep, pipe one grep into another.)

Slide 8

Quantifiers

• * means “preceding character (or group), zero or more times”.

Example: .*

• + means “preceding character/group, one or more times”. (Must escape in

basic syntax.)

Example: a+

• {N,M} means “preceding character/group, N to M times”. (Must escape curly

brackets in basic syntax.)

• Notice that quantifiers are “greedy” — match longest string possible.



CSCI 3294 March 21, 2005

Slide 9

Grouping in Regular Expressions

• Use parentheses to group. (Must escape them in basic syntax.)

Example: (abc)(def)

Example: (abc)*

• Can then “backreference” groups, with \1, \2, etc.

Example: (abc)(.*)\1

Slide 10

A Few More Tricks

• Angle brackets match beginning/end of word. (Must escape in basic syntax.)

Example: <hello>



CSCI 3294 March 21, 2005

Slide 11

Usage of Regular Expressions, Revisited

• Can use regular expression to search — grep, search in vi.

• Can also use them to modify — sed, search-and-replace in vi.

Backreferences can be useful here!

Example: s/\(ˆ..\)\(.*\)/\2\1

Slide 12

Where to Learn More

• man and/or info pages for sed, grep.

• Online help for vim.

• Books and online references/tutorials . . .

• Useful advice from vim’s help:

Which of these should you use? Whichever one you can remember.



CSCI 3294 March 21, 2005

Slide 13

Minute Essay

• Try writing a regular expression that would match a “license plate” string of

the form “one uppercase letter, then two digits, then three uppercase letters”.

(Hint: Remember that [A-Z] matches one uppercase letter. Similar syntax

for digits.)

Slide 14

Minute Essay Answer

• A not-so-hard-to-remember answer:

[A-Z][0-9][0-9][A-Z][A-Z][A-Z]


