
CSCI 3294 April 11, 2005

Slide 1

Administrivia

• Homeworks 6 and 7 on Web. Nominally due next Monday, but will be

accepted up to a week late without penalty. I’m planning one more homework

(a not-too-tough “sum up what you learned” assignment).

• Info on projects on Web (linked from due date, May 10). Notice that proposals

must be submitted by April 29.

Slide 2

Minute Essay From Last Lecture

• Question: What do you currently use to produce formatted documents? What

do you like/dislike about it?

• Most frequently mentioned was MS Word. A few mentions of OpenOffice

Writer, one of LATEX.

Noteworthy “don’t like”: Autoformatting.

Noteworthy “like”: “Universal format.” (Only, of course, for platforms for which

MS Word is available.)

CSCI 3294 April 11, 2005

Slide 3

The make Utility

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile the parts that are

affected.

• Idea behind make — have the computer figure out what needs to be

recompiled and issue the right commands to recompile it.

Slide 4

Makefiles

• First step in using make is to set up a “makefile” describing how the files that

make up your program (source, object, executable, etc.) depend on each

other and how to update the ones that are generated from others. Normally

call this file Makefile or makefile.

Very simple example:

main: main.o foo.o

gcc -o main main.o foo.o

main.o: main.c defs.h foo.h

gcc -c main.c

foo.o: foo.c

gcc -c foo.c

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

CSCI 3294 April 11, 2005

Slide 5

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile. make

foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.

Slide 6

Defining Rules

• You define dependencies for a rule by giving, for each “target”, a list of files it

depends on.

• You also give the list of commands to be used to recreate the target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of Unix:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.

CSCI 3294 April 11, 2005

Slide 7

Phony Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.

Slide 8

Variables in Makefiles

• You can also define variables, e.g.:

– List of object files needed to create an executable. Then use this list to

specify dependencies, command.

– Pathname for a command, options to be used for all compiles, etc.

• Example:

objs = main.o foo.o

CFLAGS = -Wall -pedantic

main: $(objs)

gcc $(CFLAGS) -o main $(objs)

CSCI 3294 April 11, 2005

Slide 9

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O

• Or you could use

CFLAGS = -Wall -pedantic $(OPT)

OPT = -O

and then optionally override the -O by saying, e.g., make OPT=-g foo.

Slide 10

Implicit Rules (Pattern Rules)

• You can define similar rules — e.g., a makefile to compile .c files using the

MPI C compiler:

MPICC = /usr/bin/mpicc

CCFLAGS = -O -Wall -pedantic

%: %.c

$(MPICC) -o $@ $(CCFLAGS) $<

$< is the .c file here (first prerequisite), and $@ is the target.

(Note that this is for GNU make. Non-GNU make has a similar idea —

“suffix rules” — with slightly different syntax.)

CSCI 3294 April 11, 2005

Slide 11

Other Uses For make

• make can be used to automate things other than compiling programs. It’s

particularly useful for defining implicit rules.

Example: Makefiles to run latex and associated programs.

Slide 12

Minute Essay

• One more real lecture, plus some time on the last class day. We’ve covered

most of the material I wanted to be sure to include. What to do in the

remaining time?

Possible topics:

– Useful/standard Unix utilities (e.g., tar).

– Text-based mail programs and/or mail filtering with procmail.

– CGI scripts.

– A little about X, desktop environments, window managers, etc.

– A little about Usenet discussion groups.

• Reminder: Homework 5 due today.

