
CSCI 3294 January 25, 2006

Slide 1

Administrivia

• Reading assignments and Homework 1 on Web; homework due next Monday

at 5pm.

Slide 2

Shells — Recap/Clarifications/Corrections

• As noted earlier — when you’re typing in a text window, you’re likely talking to

a “shell”.

• Several choices; most commonly used are probably bash and tcsh. By

default, you get the one in your entry in the password file. (Change with

chsh command on some systems.) Can start a different one by typing its

name, like any other command.

• Following discussion is about bash, but other shells provide similar

functionality.

CSCI 3294 January 25, 2006

Slide 3

What bash Does With What You Type — In-Place
Editing

• Simple editing — left and right arrows; ctrl-a, ctrl-e, etc.

• Command history — move forward/back with up and down arrows, search

with ctrl-r.

• Tab completion — for filenames, command names, etc.

• Read about bash and/or readline — man and info pages for more

info.

Slide 4

What bash Does With What You Type — Processing
Command Line

• Shell takes completed line and expands filename wildcards, references to

variables (more about both in next slides), “tokenizes” command into

commandname and parameters, splitting (by default) at whitespace.

• If that’s not what you want — e.g., to include a space in a filename, inhibit

expansion of filename wildcards, etc. — use escape character (backslash) or

quotes. Single quotes inhibit all of this, double quotes all but variable

substitution.

CSCI 3294 January 25, 2006

Slide 5

What bash Does With What You Type — Processing
Command Line

• Shell locates command in “search path” (PATH environment variable) and

forks off a new process.

• Command’s return code then available via shell variable. (Why would anyone

care? Useful in writing scripts.)

Slide 6

What bash Does With What You Type — Miscellaneous

• Notice that some keys have meanings other than what Windows users are

used to — ctrl-C, ctrl-D, ctrl-Z, possibly also ctrl-S, ctrl-Q (depending on

environment — e.g., which terminal emulator).

CSCI 3294 January 25, 2006

Slide 7

Environment Variables

• Associated with a process (e.g., a shell) there can be “environment variables”.

Useful as another way (in addition to command-line arguments, input from

file/keyboard, etc.) of giving process information.

• Some variables of interest — PATH, SHELL, HOME, USER.

• To display current value, printenv FOO or echo $FOO.

• To set value, FOO=value (no spaces) in bash.

• To make value available to other commands, export FOO.

Slide 8

Filename Expansion

• You probably already know about using * as a wildcard for specifying one or

more files. Other options too — “filename expansion” section in full bash

manual or info pages.

• echo can be used to check what a particular expression expands to.

CSCI 3294 January 25, 2006

Slide 9

Shell Customizations

• At startup, shell reads in various configuration files (see man page for

details). At least one will be in your home directory (.bashrc for bash).

• In these files, you can

– Define/redefine environment variables (e.g., PATH, PS1). For bash, be

sure to export them. Can define new ones (I find this useful).

– Define aliases/functions (more on next slide).

• Caution: The default setup on our lab machines is somewhat elaborate. Goal

is to have things work right on all environments — Linux (currently FC4), but

also Mac OS X. Look at ˜defaults/system/SYSTEM.bashrc for

details.

Slide 10

Shell Customizations — Aliases and Functions (bash)

• Aliases are simple substitution, no parameters. E.g.

alias lt=’ls -ltF’

alias google=’lynx http://www.google.com’

• Functions can have positional parameters. E.g.,

function cd-and-show() { cd $1 ; pwd ; ls; }

CSCI 3294 January 25, 2006

Slide 11

Processes and “Job Control”

• Normally, command you type is a “foreground process”. Append &, though,

and you get a “background process”.

• Can make a foreground process a background process, and vice versa (fg

and bg commands; jobs command).

• Can even run commands in “batch” mode (batch command).

Slide 12

I/O Redirection

• In programming classes I talk about “reading from standard input” (stdin)

rather than “reading from the keyboard”. Why?

How about stdout, stderr?

• stdin can come from keyboard, file, or inline in shell script. stdout and

stderr can go to terminal or file (overwrite or append), separately or

together. (Syntax depends in part on which shell you’re using.)

• How is this useful? (e.g., in program development? testing?)

• OR — remember quotation from last time?

“Write programs that do one thing and do it well. Write programs to work

together. Write programs to handle text streams, because that is a universal

interface.”

CSCI 3294 January 25, 2006

Slide 13

Pipes

• “Pipes” provide one-way communication between programs — output of

program A becomes input of program B.

• Key component of “the Unix philosophy” — emphasis on providing a toolkit of

small programs, mechanisms for combining them.

• “Filters” are programs designed to work this way: sort, head, wc, sed,

awk, and too many others to name.

Other programs that fit in well — more, less, grep.

Slide 14

Filters

• Some commonly-used filters:

head tail

sort uniq

grep wc

cut paste

tr expand

awk sed

• Use these in combination with, e.g., ps, ls.

• More next time, and examples.

CSCI 3294 January 25, 2006

Slide 15

Minute Essay

• How is the pace of the class so far? too fast (too much new-to-you info), too

slow (too little new-to-you info), . . . ?

