
CSCI 3294 February 1, 2005

Slide 1

Administrivia

• Homework 2 on Web; due Monday.

• Notice that answers to non-opinion minute essay questions (e.g., first

question from Monday) are in final version of notes online.

• Reading assignments meant to be skimmed — read carefully only parts that

we talked about in class, or that interest you.

Slide 2

More Filters

• sed — “stream editor” — non-interactive program, by default does not edit in

place, but works as a filter, transforming input to produce output.

• Some simple uses:

– Search and replace:

sed ’s/old/new/g’ infile >outfile

– Delete lines containing some string:

sed ’/this/d’ infile >outfile

(How else could you do this?)

• Especially useful with regular expressions (later).

CSCI 3294 February 1, 2005

Slide 3

More Filters, Continued

• awk — implementation of programming language AWK — “pattern scanning

and processing language”.

• Lines of AWK program specify pattern and action. (Can also include function

definitions.)

• Basic processing — split each line of input (“record”) into “fields”, compare to

patterns in program, execute actions for any patterns that match.

• Simple uses:

– Print selected fields from input (as in examples from last time).

– Print selected lines of input:

awk ’/this/’ infile

(How else could you do this?)

Slide 4

More Useful Commands

• find. Very powerful/flexible, though if you don’t use it often you probably will

have to read the man page to remember syntax.

• Simple examples:

– Find all files in the current directory modified in the last week.

find . -mtime -7

– Find all files in your home directory whose name contains hello.

find $HOME -name "*hello*"

– Find all files in the current directory that end in .bak and apply rm -i

to them.

find . -name "*.bak" -exec rm -i {} \;

CSCI 3294 February 1, 2005

Slide 5

More Useful Commands, Continued

• diff — compare files or directories. (A good use — “regression testing” of

programs.)

• pushd, popd (actually shell built-ins) — manipulate shell’s stack of

directories.

Slide 6

More Useful Commands, Continued

• xargs — “build and execute command lines from standard input”.

– Find all processes for program java and kill them:

ps aux | grep java | awk ’{print $2}’ | xargs

kill

CSCI 3294 February 1, 2005

Slide 7

Shell Input as a Programming Language

• What bash understands is in a sense a programming language, with the

shell as its interpreter:

– Variables (untyped).

– Expressions (arithmetic and logical).

– Conditionals (if/then/else) and loops.

– Functions.

• Can be used interactively, or collected into “scripts”.

• I will talk about bash, but most shells provide similar functionality, just

sometimes with different syntax. If you want to write scripts portable to most

Unix systems, probably best to stick to sh subset of bash.

Slide 8

Shell Scripts

• A “shell script” is just a sequence of things you could type at the shell prompt,

collected in a (text) file.

• Normally, first line of script is #! followed by path for shell (/bin/bash,

e.g.), and the file is marked “executable” (with chmod). But you can also

execute commands in file anyfile via bash anyfile.

• With the exception of the first line, lines starting with # are comments.

CSCI 3294 February 1, 2005

Slide 9

Minute Essay

• Write a command to find all the files in the current directory (and

subdirectories) that are less than a week old and list them in reverse order by

modification time (i.e., newest to oldest).

Slide 10

Minute Essay Answer

• The solution I had in mind was

find . -mtime -7 | xargs ls -lt

but there are undoubtedly other ways!

