
CSCI 3294 February 6, 2006

Slide 1

Administrivia

• Reminder: Homework 2 due today by 5pm.

• Homework 1 solution on Web, linked from “lecture topics and assignments”

page.

Slide 2

Shell Scripts — Review

• A “shell script” is just a sequence of things you could type at the shell prompt,

collected in a (text) file.

• Normally, first line of script is #! followed by path for program to use to

execute it (e.g., /bin/bash), and the file is marked “executable” (with

chmod). But you can also execute commands in file anyfile via bash

anyfile.

• With the exception of the first line, lines starting with # are comments.

CSCI 3294 February 6, 2006

Slide 3

Shell Variables

• Define/assign variables with, e.g., myvar="hello". (Notice absence of

spaces.)

• Reference with, e.g., $myvar.

• (Same idea as environment variables — in fact there seems to be no clear

distinction, except the latter are usually “exported” so they’re available to child

processes.)

Slide 4

Command Substitution

• Can “inline” output of one command as parameters of another using

backquotes. Example:

vim ‘find . -name "*.c"‘

or use newer bash syntax

vim $(find . -name "*.c")

• The “inlined” command can even be a pipeline. Example:

ls -ld ‘echo $PATH | sed ’s/:/ /g’‘

CSCI 3294 February 6, 2006

Slide 5

Shell Functions and Parameters

• Define functions as described previously — function followed by name,

parentheses, then function definition in curly brackets. Separate/end

commands with ; or newlines.

• Parameters for functions and shell scripts are positional — $0 for function

name, then $1, etc. $* is a list of all parameters; $# is the count of

parameters, not including $0.

• Call functions or shell scripts by giving name and then parameters, separated

by whitespace. (If a parameter should include whitespace, use quoting or

escape characters.)

Slide 6

Conditionals and Loops

• Basic syntax for if/then/else:

if command

then list-of-commands

else list-of-commands

fi

Which branch is taken depends on return code from command after if — 0

considered “true”, other values “false”.

• Basic syntax for while loops:

while command

do list-of-commands

done

Continues until return code from command after while is non-zero.

CSCI 3294 February 6, 2006

Slide 7

Conditionals and Loops, Continued

• Basic syntax for for loops:

for var in list-of-values

do list-of-commands

done

• Other constructs include case (like C switch), until.

Slide 8

Useful Commands for Conditions, Loops, Etc.

• Probably the most common for conditions is test. Many options. Example:

if [-z "$1"]

then echo Usage: ‘basename $0‘ someparameter; exit

fi

• For lists/loops, seq, wildcards, and command substitution are good.

Examples:

for n in ‘seq -w 0 21‘

do echo Xena$n

done

for f in ‘ls $HOME‘

do du -sh $HOME/$f

done

CSCI 3294 February 6, 2006

Slide 9

Arithmetic

• Most basic/portable way probably expr. Example: n=‘expr $n + 1‘.

• In bash, can also use double parentheses. Example: n=$((n + 1)).

Slide 10

Reading from Standard Input

• To read from shell’s / script’s standard input: read. Example:

echo "Do you really want to do this? (y/n)"

read ans

if ["$ans" = "y"]

CSCI 3294 February 6, 2006

Slide 11

“Here” Documents

• We talked about redirecting input and output. One more option for input,

useful in scripts, is to get it from the script itself — “here” document. Example:

#!/bin/sh

mail -s "a subject" bmassing << EOF

hello

I am here

who are you?

is this fun?

EOF

Slide 12

A Few More Useful Things

• getopt — process command-line options (to help you write scripts that

accept options in any order, in the same way most Unix commands do).

CSCI 3294 February 6, 2006

Slide 13

Minute Essay

• The command ping -c 1 Janus00 will test to see if Janus00 is

network-reachable. Write a few lines of bash input that would let you “ping”

all the Janus machines.

Slide 14

Minute Essay Answer

• One possible answer:

for n in ‘seq -w 0 21‘

do

ping -c 1 Janus$n

done

• Another answer (contributed by one of you):

for n in ‘ruptime | grep Janus | awk ’{print $1}’‘

do

ping -c 1 Janus$n

done

