
CSCI 3294 February 22, 2006

Slide 1

Administrivia

• Reminder: Homework 4 due today at 5pm. (I’ll accept it through Friday at

5pm without penalty.)

• Homework 5 (regular expressions) on Web; due next Wednesday.

Slide 2

Minute Essay From Last Lecture

• One pico user; everyone else uses vi(m).

• Noteworthy comments about vi(m):

Not so easy to be “bilingual” in vi(m) and other programs’ built-in editors.

Would be nice to have support for mouse (:help mouse).

Copy and paste is a pain (:help visual-mode).



CSCI 3294 February 22, 2006

Slide 3

Regular Expressions

• From (old) Wikipedia definition:

A regular expression (abbreviated as regexp, regex or regxp) is a string

that describes or matches a set of strings, according to certain syntax

rules. Regular expressions are used by many text editors and utilities to

search and manipulate bodies of text based on certain patterns.

• Idea has roots in formal theory of languages, where the “languages” (sets of

strings) described by regular expressions are exactly the ones accepted by

finite state automata.

Slide 4

Regular Expressions and Unix Tools

• Tools that use regular expressions include editors and also text-manipulation

commands such as grep and sed. Also supported in many programming

languages, especially ones for scripting (Perl, Python, bash, etc.).

• This being Unix, not all the tools accept exactly the same syntax. POSIX

defines two standards, “basic” and “extended”. Some tools/languages add

more. Simple stuff is very similar in all versions, fortunately. Key difference —

in basic syntax, must precede many special characters with “escape

character” (backslash).

Also notice that to keep shell from doing its thing with your regular

expressions (which generally you don’t want), must enclose in single or

double quotes.



CSCI 3294 February 22, 2006

Slide 5

Character Literals and Metacharacters

• Most characters represent themselves.

hello matches what?

• Other characters are “special” (metacharacters):

ˆ matches start of line

$ matches end of line

. matches any character (except newline)

To use these as regular character literals, “escape” with a backslash.

• Example(s) from class:
grep "hello" foo

grep "ˆhello" foo

grep "hello$" foo

grep "ˆhello$" foo

grep "h.llo" foo

grep "h\.llo" foo

Slide 6

Character Classes

• Character classes represent “one of these characters”.

Examples: [abcd], [0-9]

• ˆ at the start of a list means “any character other than these”:

Example: [ˆabcd]

• Most tools define some shorthand:

Examples: \s for whitespace, [:alpha:] for letter

• Example(s) from class:
grep ’h[ae]llo’ foo

sed ’s/[A-Z]/!/g’ foo

sed ’s/[A-Za-z0-9]/!/g’ foo

sed ’s/[ˆA-Za-z0-9]/!/g’ foo

sed ’s/[[:alnum:]]/!/g’ foo

sed ’s/[ˆ[:print:]]/!/g’ foo



CSCI 3294 February 22, 2006

Slide 7

“OR” (Alternation)

• Unix pipe symbol (|) separates alternatives. (Must escape in basic syntax.)

Example: cat|dog

• (What about AND? Usually don’t need it, or can get the same result another

way. For grep, pipe one grep into another.)

• Example(s) from class:
grep ’hello\|bye’ foo

Slide 8

Quantifiers

• * means “preceding character (or group), zero or more times”.

Example: .*

• + means “preceding character/group, one or more times”. (Must escape in

basic syntax.)

Example: a+

• {N,M} means “preceding character/group, N to M times”. (Must escape curly

brackets in basic syntax.)

• Notice that quantifiers are “greedy” — match longest string possible.

• Example(s) from class:
sed ’s/[0-9]\+/NUMBERS/g’ foo

sed ’s/[0-9]\{2\}/NUMBERS/g’ foo

sed ’s/[0-9]\{1,4\}/NUMBERS/g’ foo



CSCI 3294 February 22, 2006

Slide 9

Grouping in Regular Expressions

• Use parentheses to group. (Must escape them in basic syntax.)

Example: (abc)(def)

Example: (abc)*

• Can then “backreference” groups, with \1, \2, etc.

Example: (abc)(.*)\1

• Example(s) from class:
sed ’s/\(hello\|bye\)\+//g’ foo

Slide 10

A Few More Tricks

• Angle brackets match beginning/end of word. (Must escape in basic syntax.)

Example: <hello>

• Example(s) from class:
grep ’\<bye\>’ foo



CSCI 3294 February 22, 2006

Slide 11

Usage of Regular Expressions, Revisited

• Can use regular expression to search — grep, search in vi.

• Can also use them to modify — sed, search-and-replace in vi.

Backreferences can be useful here!

Example: s/\(ˆ..\)\(.*\)/\2\1

• Example(s) from class:
sed ’s/\(.\+\) \(.\+\)/\2 \1/’ foo

Slide 12

Where to Learn More

• man and/or info pages for sed, grep; info page for regex.

• Online help for vim.

• Books and online references/tutorials . . .

• Useful advice from vim’s help:

Which of these should you use? Whichever one you can remember.

• There are also programs that offer a GUI-ish environment for trying things out.

I’ve installed a couple in my home directory

/users/bmassing/Pgms/regexp/regex-coach

/users/bmassing/Pgms/regexp/visual regexp-3.0/visual regexp 1.tcl

and put links to these and others for Linux on the “Useful links” page.



CSCI 3294 February 22, 2006

Slide 13

Post-Lecture Additions

• How to search for / replace a literal backslash? [\] works. \\ also works,

but to pass that to grep, it appears that you have to enclose the string in

single rather than double quotes.

• As a student pointed out, backslash does seem to have different meanings in

different contexts here. From the info page from regex:
The ‘\’ character has one of four different meanings, depending on

the context in which you use it and what syntax bits are set (*note

Syntax Bits::). It can: 1) stand for itself, 2) quote the next

character, 3) introduce an operator, or 4) do nothing.

A bit strange, but in practice, I claim one can get used to it.

Slide 14

Minute Essay

• None — sign in.


