CSCI 3294 February 6, 2008

Administrivia

e About minute essays: meant to take only a minute or two, no wrong answer,
but if you have a few extra minutes, no rule against doing some experimenting

and reading of man pages!

Slide 1

Minute Essay From Last Lecture

o Recall problem — count lines in . bashrc that contain the word alias.
e | had in mind a solution using grep and wc.

e One person thought of piping output of vi into grep, but said it probably
wouldn’t work. (Why not?) But you could use cat — though for this you don’t
Slide 2 need to.

CSCI 3294 February 6, 2008

The Big Picture, Again

e Material in this course can come across as a bunch of parlor tricks — fun in
their way, but “so what?”

e The “big picture” view — introduce you to a range of tools that can help you
“work smart, not hard”. (“Laziness in programmers is a virtue”?)

Slide 3 The idea — if it's tedious and repetitive and can be done by the computer

rather than by the human, make the computer do it! even if that requires the

human to think a bit more.

Once you start thinking along these lines, you may work differently with other

tools too (using keyboard shortcuts rather than menus, cutting and pasting
rather than retyping, etc.).

4)

More Filters

o sed — “stream editor” — non-interactive program, by default does not edit in
place, but works as a filter, transforming input to produce output. Especially
useful with regular expressions (later), and in manipulating variables within a
command (later).

Slide 4 e Some simple uses (with commands inline):

— Search and replace:
sed 's/old/new/g' infile > outfile

— Delete lines containing some string:
sed '/this/d' infile > outfile
(How else could you do this?)

For more complicated edits, can put command(s) in a file rather than inline.

. J

CSCI 3294 February 6, 2008

4)

More Filters, Continued

o awk — implementation of programming language AWK — “pattern scanning
and processing language”.

e Lines of AWK program specify pattern and action. (Can also include function

definitions.)

Slide 5 e Basic processing — split each line of input (“record”) into “fields”, compare to
patterns in program, execute actions for any patterns that match.
e Some simple uses (with commands inline):
— Print selected fields from input (as in examples from last time).
— Print selected lines of input:
awk '/this/' infile

(How else could you do this?)

For more complicated edits, can put command(s) in a file rather than inline.

. J

4)

More Useful Commands

e find. Very powerful/flexible, though if you don’t use it often you probably will
have to read the man page to remember syntax.

e Simple examples:
— Find all files in the current directory modified in the last week.

Slide 6 find . -mtime -7

— Find all files in your home directory whose name contains hello.
find $HOME -name "xhello*"

— Find all files in the current directory and subdirectories that end in . bak
and remove them.
find . -name "x.bak" -exec rm {} \;
(The —1 flag doesn’t work in this context, but if you want to be prompted,
replace —exec with —ok.)

. J

CSCI 3294 February 6, 2008

More Useful Commands, Continued

e diff — compare files or directories. (A good use — “regression testing” of

programs.)

e pushd, popd (actually shell built-ins) — manipulate shell’s stack of

directories.

Slide 7 e cat (concatenate — one or more inputs to output). Sometimes used when it
doesn’t need to be, as a substitute for redirecting input (“Useless Use Of Cat
(UUOCY)”).

More Useful Commands, Continued
e xargs — “build and execute command lines from standard input”.
— Find all processes for program jawva and kill them:

ps aux | grep java | awk '{print $2}' | xargs kil]l

Slide 8

CSCI 3294 February 6, 2008

e Write a command to find all the files in the current directory (and
subdirectories) that are less than a week old and list them in reverse order by
modification time (i.e., newest to oldest).

Slide 9
e The solution | had in mind was
find . -mtime -7 | xargs ls -1t
but there are undoubtedly other ways!
Slide 10

