
CSCI 3294 April 23, 2008

Slide 1

Administrivia

� Reminder: I want a (short) project proposal from each of you, even if we
discussed your project in person.

Slide 2

Installing and Updating Software — Package Managers

� “Modern” way to package software for installation depends on “package
manager” — something that keeps track of what’s installed, what depends on
what, etc. (Examples — Fedora has yum, Debian has apt-get.) Software
packaged as, e.g., .rpm or .deb files.

� If installing in “normal” system directories, and as root, probably best to take
this approach.

� If you want to install in other directories (e.g., your home directory), or you
don’t have root access, some packages allow that, or you can (probably?)
unpackage it Or there’s the traditional UNIX approach . . .



CSCI 3294 April 23, 2008

Slide 3

Installing and Updating Software — “Tarballs”

� Traditionally, UNIX software distributed in the form of a “tarball” (archive
created by tar, possibly compressed, usually containing source). Still often
available and useful — e.g., to install in your home directory.

� What do you do with a tarball? Typical installation goes like this . . .

Slide 4

Installing and Updating Software — Installation from
“Tarball”

� “Untar” the file (tar xf). Usually creates a directory, often containing
README and/or INSTALL files — which you should review.

� Run configure script to set system-specific options. Usually figures most
things out for itself, but may need/allow user input, either via command-line
options or standard input.

� Run make to compile, etc. Normally puts created files in the same directory.

� Run make install to move/copy executables, etc., to system
directories. Notice that this is the only step that requires root privileges — and
only if installing in system directories.



CSCI 3294 April 23, 2008

Slide 5

More About Files — Permissions

� We talked about most of bits settable with chmod — r/w/x for u/g/o. But
there are three more bits, applicable to directories and executable files . . .

� setuid “sets process’s effective user ID”. No effect on directories.
� setgid “sets effective group ID”. Different effects on executables and (on

some systems) directories.

����� sticky
���

. . . For executables, no longer used on some systems for
original purpose. For directories, on some systems used for “restricted
deletion”.

Slide 6

More About Files — Hard Links Versus Soft Links

� Some background: UNIX filesystems traditionally keep track of files using
“inodes”. (I.e., directory entries point to inodes, which contain permissions,
etc., plus info about file blocks.)

� “Hard link” points to inode.

� “Soft link” is just a file containing a path name.

� Which can point to a file on another filesystem? Which can be “broken”?



CSCI 3294 April 23, 2008

Slide 7

More About Processes and Shells

� You write a script to change directories. When you run it, what happens?
Why?

(Does this also explain why man cd gives you the man page for a shell?)

� What’s the difference between “executing” a shell script and “sourcing” it?

Slide 8

Miscellaneous Useful Tips

� Recall many things you can do to replay commands from command history.

� Recall pushd and popd.

� If you know a lot of editor tricks, but only a few shell tricks, consider using
editor to build temporary scripts. (Example(s).)



CSCI 3294 April 23, 2008

Slide 9

Some Questions from Minute Essays

� “How do you program a text-based game like the Tetris shown in class?”

ncurses library provides text-only GUI-like functionality. Used by many
programs that need this — mutt, etc. (See “Useful links” page here).

(Another useful library — readline, which provies tab completion,
command history, etc. man readline for more information.)

� “Any way to chat / send messages over network, like netsend in DOS”?

There’s talk — two-person text-based chat program, apparently blocked on
lab machines.

Slide 10

Minute Essay

� None — sign in.

http://www.cs.trinity.edu/~bmassing/Classes/CS3294_2008spring/HTML/links.html

