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Administrivia

• Reminder: Homework 2 due Wednesday.
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The Big Picture, Again

• Material in this course can come across as a bunch of parlor tricks — fun in

their way, but “so what?”

• The “big picture” view — introduce you to a range of tools that can help you

“work smart, not hard”. (“Laziness in programmers is a virtue”?)

The idea — if it’s tedious and repetitive and can be done by the computer

rather than by the human, make the computer do it! even if that requires the

human to think a bit more.

Once you start thinking along these lines, you may work differently with other

tools too (using keyboard shortcuts rather than menus, cutting and pasting

rather than retyping, etc.).
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Pipes — Review

• “Pipes” provide one-way communication between programs — output of

program A becomes input of program B.

• Key component of “the UNIX philosophy” — emphasis on providing a toolkit of

small programs, mechanisms for combining them.

• “Filters” are programs designed to work this way, and there are lots of them

(some in next slides and next time). less and more also useful.
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Filters

• head, tail.

• sort, uniq.

• grep — search for text (or regular expression — more later).

• wc — count characters, words, lines.

• tr — “translate”. Good for converting, e.g., upper-case to lower-case.

• tee — duplicates input. Good for capturing output to a file while also

displaying it onscreen.
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Filters, Continued

• sed — “stream editor”. Example — convert DOS/Windows-style text file

(each line ends with \r\n) to UNIX-style (each line ends with \n).

• awk — “pattern scanning and processing language” — many interesting

possibilities; simplest is just to break up input into whitespace-delimited fields.
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Examples

• Find all processes that belong to your username:

ps aux | grep $USER

• Generate a list of machines that are “up”:

ruptime | grep up | awk ’{print $1}’

• Show how much space each subdirectory of your home directory is using,

sorted by size.

du -sk $HOME/* | sort -n

(Unfortunately this omits directories starting with a dot.)
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More Filters

• sed — “stream editor” — non-interactive program, by default does not edit in

place, but works as a filter, transforming input to produce output. Especially

useful with regular expressions (later), and in manipulating variables within a

command (later).

• Some simple uses (with commands inline):

– Search and replace:

sed ’s/old/new/g’ infile > outfile

– Delete lines containing some string:

sed ’/this/d’ infile > outfile

(How else could you do this?)

For more complicated edits, can put command(s) in a file rather than inline.
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More Filters, Continued

• awk — implementation of programming language AWK — “pattern scanning

and processing language”.

• Lines of AWK program specify pattern and action. (Can also include function

definitions.)

• Basic processing — split each line of input (“record”) into “fields”, compare to

patterns in program, execute actions for any patterns that match.

• Some simple uses (with commands inline):

– Print selected fields from input (as in examples from last time).

– Print selected lines of input:

awk ’/this/’ infile

(How else could you do this?)

For more complicated edits, can put command(s) in a file rather than inline.
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More Useful Commands

• find. Very powerful/flexible, though if you don’t use it often you probably will

have to read the man page to remember syntax.

• Simple examples:

– Find all files in the current directory modified in the last week.

find . -mtime -7

– Find all files in your home directory whose name contains hello.

find $HOME -name "*hello*"

– Find all files in the current directory and subdirectories that end in .bak

and remove them.

find . -name "*.bak" -exec rm {} \;

(The -i flag doesn’t work in this context, but if you want to be prompted,

replace -exec with -ok.)
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More Useful Commands, Continued

• diff — compare files or directories. (A good use — “regression testing” of

programs.)

• pushd, popd (actually shell built-ins) — manipulate shell’s stack of

directories.

• cat (concatenate — one or more inputs to output). Sometimes used when it

doesn’t need to be, as a substitute for redirecting input (“Useless Use Of Cat

(UUOC)”).
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More Useful Commands, Continued

• xargs — “build and execute command lines from standard input”.

– Find all processes for program java and kill them:

ps aux | grep java | awk ’{print $2}’ | xargs kill
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Minute Essay

• Write a command to find all the files in the current directory (and

subdirectories) that are less than a week old and list them in reverse order by

modification time (i.e., newest to oldest).
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Minute Essay Answer

• The solution I had in mind was

find . -mtime -7 | xargs ls -lt

but there are undoubtedly other ways!


