
CSCI 3294 September 21, 2009

Slide 1

Administrivia

• Reminder: Homework 2 due Wednesday.

Slide 2

The Big Picture, Again

• Material in this course can come across as a bunch of parlor tricks — fun in

their way, but “so what?”

• The “big picture” view — introduce you to a range of tools that can help you

“work smart, not hard”. (“Laziness in programmers is a virtue”?)

The idea — if it’s tedious and repetitive and can be done by the computer

rather than by the human, make the computer do it! even if that requires the

human to think a bit more.

Once you start thinking along these lines, you may work differently with other

tools too (using keyboard shortcuts rather than menus, cutting and pasting

rather than retyping, etc.).

CSCI 3294 September 21, 2009

Slide 3

Pipes — Review

• “Pipes” provide one-way communication between programs — output of

program A becomes input of program B.

• Key component of “the UNIX philosophy” — emphasis on providing a toolkit of

small programs, mechanisms for combining them.

• “Filters” are programs designed to work this way, and there are lots of them

(some in next slides and next time). less and more also useful.

Slide 4

Filters

• head, tail.

• sort, uniq.

• grep — search for text (or regular expression — more later).

• wc — count characters, words, lines.

• tr — “translate”. Good for converting, e.g., upper-case to lower-case.

• tee — duplicates input. Good for capturing output to a file while also

displaying it onscreen.

CSCI 3294 September 21, 2009

Slide 5

Filters, Continued

• sed — “stream editor”. Example — convert DOS/Windows-style text file

(each line ends with \r\n) to UNIX-style (each line ends with \n).

• awk — “pattern scanning and processing language” — many interesting

possibilities; simplest is just to break up input into whitespace-delimited fields.

Slide 6

Examples

• Find all processes that belong to your username:

ps aux | grep $USER

• Generate a list of machines that are “up”:

ruptime | grep up | awk ’{print $1}’

• Show how much space each subdirectory of your home directory is using,

sorted by size.

du -sk $HOME/* | sort -n

(Unfortunately this omits directories starting with a dot.)

CSCI 3294 September 21, 2009

Slide 7

More Filters

• sed — “stream editor” — non-interactive program, by default does not edit in

place, but works as a filter, transforming input to produce output. Especially

useful with regular expressions (later), and in manipulating variables within a

command (later).

• Some simple uses (with commands inline):

– Search and replace:

sed ’s/old/new/g’ infile > outfile

– Delete lines containing some string:

sed ’/this/d’ infile > outfile

(How else could you do this?)

For more complicated edits, can put command(s) in a file rather than inline.

Slide 8

More Filters, Continued

• awk — implementation of programming language AWK — “pattern scanning

and processing language”.

• Lines of AWK program specify pattern and action. (Can also include function

definitions.)

• Basic processing — split each line of input (“record”) into “fields”, compare to

patterns in program, execute actions for any patterns that match.

• Some simple uses (with commands inline):

– Print selected fields from input (as in examples from last time).

– Print selected lines of input:

awk ’/this/’ infile

(How else could you do this?)

For more complicated edits, can put command(s) in a file rather than inline.

CSCI 3294 September 21, 2009

Slide 9

More Useful Commands

• find. Very powerful/flexible, though if you don’t use it often you probably will

have to read the man page to remember syntax.

• Simple examples:

– Find all files in the current directory modified in the last week.

find . -mtime -7

– Find all files in your home directory whose name contains hello.

find $HOME -name "*hello*"

– Find all files in the current directory and subdirectories that end in .bak

and remove them.

find . -name "*.bak" -exec rm {} \;

(The -i flag doesn’t work in this context, but if you want to be prompted,

replace -exec with -ok.)

Slide 10

More Useful Commands, Continued

• diff — compare files or directories. (A good use — “regression testing” of

programs.)

• pushd, popd (actually shell built-ins) — manipulate shell’s stack of

directories.

• cat (concatenate — one or more inputs to output). Sometimes used when it

doesn’t need to be, as a substitute for redirecting input (“Useless Use Of Cat

(UUOC)”).

CSCI 3294 September 21, 2009

Slide 11

More Useful Commands, Continued

• xargs — “build and execute command lines from standard input”.

– Find all processes for program java and kill them:

ps aux | grep java | awk ’{print $2}’ | xargs kill

Slide 12

Minute Essay

• Write a command to find all the files in the current directory (and

subdirectories) that are less than a week old and list them in reverse order by

modification time (i.e., newest to oldest).

CSCI 3294 September 21, 2009

Slide 13

Minute Essay Answer

• The solution I had in mind was

find . -mtime -7 | xargs ls -lt

but there are undoubtedly other ways!

