
CSCI 3294 September 23, 2009

Slide 1

Administrivia

• Reminder: Homework 2 due today by 5pm.

Slide 2

Shell Input as a Programming Language — the Good

• What bash understands is in a sense a programming language, with the

shell as its interpreter:

– Variables (usually untyped).

– Expressions (arithmetic and logical).

– Conditionals (if/then/else) and loops.

– Functions.

• Can be used interactively, or collected into “scripts”.

• I will talk about bash, but most shells provide similar functionality, just

sometimes with different syntax.

CSCI 3294 September 23, 2009

Slide 3

Shell Input as a Programming Language — the Bad

• Writing portable scripts is tough. Sticking to the sh subset of bash helps, as

does avoiding GNU-only commands and extensions, but how to do that . . .

• Dealing with spaces (in filenames, e.g.) is a huge pain. Rules for quoting are

tricky, and sometimes it seems the only way to get it right is to just try things

until something works. (Yuck!)

• Advice: For long and complex scripts, a scripting language such as Perl or

Python may be a better choice than a shell script.

Slide 4

Shell Scripts

• A “shell script” is just a sequence of things you could type at the shell prompt,

collected in a (text) file.

• Normally, first line of script is #! followed by path for shell (/bin/bash,

e.g.), and the file is marked “executable” (with chmod). But you can also

execute commands in file anyfile via bash anyfile.

• With the exception of the first line, lines starting with # are comments.

CSCI 3294 September 23, 2009

Slide 5

Shell Variables

• Define/assign variables with, e.g., myvar="hello". (Notice absence of

spaces.)

• Reference with, e.g., $myvar.

• What’s the difference between these and “environment variables” already

mentioned? Shell variables are local to the shell, not passed on to child

processes. Distinction is somewhat blurred in Bourne shells. Convention is

that environment variable names are all caps.

Slide 6

Command Substitution

• Can “inline” output of one command as parameters of another using

backquotes. Example:

vim ‘find . -name "*.c"‘

or use newer bash syntax

vim $(find . -name "*.c")

• The “inlined” command can even be a pipeline. Example:

ls -ld ‘echo $PATH | sed ’s/:/ /g’‘

• (Notice that these are backquotes, not single quotes!)

CSCI 3294 September 23, 2009

Slide 7

Shell Functions and Parameters

• Define functions as described previously — function followed by name,

parentheses, then function definition in curly brackets. Separate/end

commands with ; or newlines.

• Parameters for functions and shell scripts are positional — $0 for function

name, then $1, etc. $* is a list of all parameters; $# is the count of

parameters, not including $0.

• Call functions or shell scripts by giving name and then parameters, separated

by whitespace. (If a parameter should include whitespace, use quoting or

escape characters.)

Slide 8

Conditionals and Loops

• Basic syntax for if/then/else:

if command

then list-of-commands

else list-of-commands

fi

Which branch is taken depends on return code from command after if — 0

considered “true”, other values “false”.

• Basic syntax for while loops:

while command

do list-of-commands

done

Continues until return code from command after while is non-zero.

CSCI 3294 September 23, 2009

Slide 9

Conditionals and Loops, Continued

• Basic syntax for for loops:

for var in list-of-values

do list-of-commands

done

• Other constructs include case (like C switch), until.

Slide 10

Useful Commands for Conditions, Loops, Etc.

• Probably the most common for conditions is test (commonly abbreviated

as square brackets). Many options. Example:

if [-z "$1"]

then echo Usage: ‘basename $0‘ someparameter; exit

fi

• For lists/loops, seq, wildcards, and command substitution are good.

Examples:

for n in ‘seq -w 0 21‘

do echo Xena$n

done

for f in ‘ls -A $HOME‘

do du -sh $HOME/$f

done

CSCI 3294 September 23, 2009

Slide 11

Other Features

• Evaluating (numeric) expressions — next time.

• Reading from standard input — next time.

Slide 12

Minute Essay

• The command ping -c 1 Janus00 will test to see if Janus00 is

network-reachable. Write a few lines of bash input that would let you “ping”

all the Janus machines.

CSCI 3294 September 23, 2009

Slide 13

Minute Essay Answer

• One possible answer:

for n in ‘seq -w 0 21‘

do

ping -c 1 Janus$n

done

• Another answer (contributed by a student one year):

for n in ‘ruptime | grep Janus | awk ’{print $1}’‘

do

ping -c 1 Janus$n

done

