
CSCI 3294 October 12, 2009

Slide 1

Administrivia

• Reminder: Homework 4 due today, Homework 5 Wednesday. Homework 6 to

be on Web soon.

Slide 2

The make Utility

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

CSCI 3294 October 12, 2009

Slide 3

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example (assuming main.c #includes defs.h and foo.h):

main: main.o foo.o

gcc -o main main.o foo.o

main.o: main.c defs.h foo.h

gcc -c main.c

foo.o: foo.c

gcc -c foo.c

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 4

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile.

make foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.

CSCI 3294 October 12, 2009

Slide 5

Defining Rules

• Define dependencies for a rule by giving, for each “target”, list of files it

depends on.

• Also give the list of commands to be used to recreate target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.

Slide 6

Phony Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.

CSCI 3294 October 12, 2009

Slide 7

Variables in Makefiles

• You can also define variables, e.g.:

– List of object files needed to create an executable. Then use this list to

specify dependencies, command.

– Pathname for a command, options to be used for all compiles, etc.

• Example:

objs = main.o foo.o

CFLAGS = -Wall -pedantic

main: $(objs)

gcc $(CFLAGS) -o main $(objs)

Slide 8

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O

• Or you could use

CFLAGS = -Wall -pedantic $(OPT)

OPT = -O

and then optionally override the -O by saying, e.g., make OPT=-g foo.

CSCI 3294 October 12, 2009

Slide 9

Implicit Rules (Pattern Rules)

• You can define similar rules — e.g., a makefile to compile .c files using the

MPI C compiler:

MPICC = /usr/bin/mpicc

CCFLAGS = -O -Wall -pedantic

%: %.c

$(MPICC) -o $@ $(CCFLAGS) $<

$< is the .c file here (first prerequisite), and $@ is the target.

(Note that this is for GNU make. Non-GNU make has a similar idea —

“suffix rules” — with slightly different syntax.)

Slide 10

Other Uses For make

• make can be used to automate things other than compiling programs. It’s

particularly useful for defining implicit rules.

Example: Makefiles to run latex and associated programs.

CSCI 3294 October 12, 2009

Slide 11

Minute Essay

• Did you learn about makefiles in PAD I? and/or have you used them before?

