
CSCI 3294 October 4, 2010

Slide 1

Administrivia

• Reminder: Homework 3 due Wednesday. (You will turn this in by e-mail.

Please put something in the subject line that names the course and the

assignment!)

Slide 2

Why Text Editors?

• In traditional UNIXworld, everything is a text file (source code, configuration

files, e-mail, input to text formatting programs, etc., etc.), so mastering a

cryptic but powerful “text editor” can pay off.

• Does this approach still make sense? Maybe, though you have to choose

your other tools carefully to get maximum payoff. But a determined person

can use the same text editor to write programs, compose e-mail messages,

“word process”, etc.)



CSCI 3294 October 4, 2010

Slide 3

Which Text Editor?

• Traditionally a “religious war” topic, with vi and emacs having the most

supporters. Both very powerful and very widely available. There are others,

but they’re not as widely available, and often are more novice-friendly than

expert-friendly.

• vi (or one of its clones) slightly more universally available. Plain vi is

lightweight but a little primitive. vi under Linux is really vim , and has lots of

extra features. Useful to know which are not “real” vi in case you ever have

to use real vi . :set cp makes vim behave almost like “real” vi .

• emacs is almost as available and highly customizable — can do almost

anything (compile and test programs, send e-mail, etc.) from within it. (If I had

it to do over again, I might well choose emacs!)

Slide 4

vi Basics

• vi is “modal” — input mode and command mode. (A subset of command

mode is “ex mode”, where you enter commands understood by the line editor

ex . These are the ones that start with : .)

• You know how to start vi . To quit (saving changes), :wq . To quit (not saving

changes), :q! . To save changes but not quit, :w .



CSCI 3294 October 4, 2010

Slide 5

vi Basics, Continued

• To move around, arrow keys usually work (and in vim you can use them in

insert mode). Old way — which always works, but requires command mode

— h, j , k , l . Does anyone still use those keys? Fanatical touch typists,

maybe!

• Scrolling up and down — ctrl-F and ctrl-B . Moving to start or end of

line — ˆ and $.

• Many other “cursor-movement” commands, e.g., w (next word) which can be

usefully combined with commands to do something (next slide).

• To find foo , /foo<CR> . (<CR>means “enter” here.) Repeat with /<CR>

(forward) or ?<CR>(backward), or n to repeat search in same direction.

Slide 6

vi Not-So-Basics

• A lot of vi functionality is built around the idea of combining commands to do

something (e.g., d to delete, y to “yank” (copy to buffer)) with commands that

move the cursor (e.g., w to move forward a word, $ to move to end of line).

• So, dw deletes a word, y$ copies text from cursor to end of line, etc. For

many of the commands, the letter twice applies it to a whole line (e.g., dd ).

• Other useful ways to move the cursor: f c to move to next c, t c to move to

just before next c. Several more; in vim , :help cursor-motions to

learn more.



CSCI 3294 October 4, 2010

Slide 7

vi Basics, Continued

• Inserting text — a (after cursor) or i (after cursor), <ESC>to exit insert

mode.

• Deleting text — x to delete a character, dw to delete a “word”, dd to delete a

line.

• To undo most recent change, u. (vim supports multiple undo. Real vi does

not!)

• To read in file foo , :r foo .

Slide 8

vi Not-So-Basics

• . to repeat previous command. Precede any command with n to repeat it n

times (e.g., 10dd to delete 10 lines).

• Deleted text (with x , dw, dd ) goes into a “cut/copy” buffer. p pastes it back

after the cursor, P before. To copy rather than delete, “yank” — yw, yy .

There are also 26 more buffers, referred to by lowercase letters. E.g., "ayy

to copy current line into buffer a. "ap to paste it back. (Yes, those are

unmatched double quotes.)

• cw to change a word, r to replace a single character, R to go into

overwrite/replace mode.



CSCI 3294 October 4, 2010

Slide 9

vi Not-So-Basics, Continued

• To work with blocks of text, can use ex commands that reference lines:

– : range-of-lines d to delete lines. (They go into the “cut/copy” buffer and

can be retrieved with p or P.) Replace d with y to yank rather than delete.

– : range-of-lines mtarget-lineto move lines. Replace mwith copy to copy.

• range-of-lines can be one line, two lines with comma between, or %for all

lines. Can reference lines with:

– Absolute line numbers (:set nu to see line numbers). $ is last line.

– Relative line numbers — . is the current line, . 1+ is the next line, etc.

– “Marks” (lowercase letters). Mark current line with, e.g., a. Reference as

’a . E.g., :’a,’bm. . No visual confirmation of marks.

Slide 10

vi Not-So-Basics, Continued

• To search and replace, can use search (/ ), replace (cw), and repeat (. ).

• Or use

: range-of-lines s/ old/ new/g

– range-of-lines is as before (%for all lines).

– old is a “regular expression” (can include wild-card-type expressions). Can

be very powerful, though syntax is cryptic! In vim , :help regexp to

read more.

– Omit g to change only the first occurrence on each line. Add c to be

prompted before each change.

– Can use any character (not just / ) to delimit old and new.



CSCI 3294 October 4, 2010

Slide 11

vi Not-So-Basics, Continued

• Another plus of vi (to its fans) is interoperability with other old-style UNIX

tools.

• : range-of-lines ! pgm to “filter” range-of-lines using program pgm. E.g.,

:%!sort to sort the whole file.

• :r! pgm to insert output of pgm after current line. E.g., .r!ls to get a list

of files in the current directory.

Slide 12

vi Not-So-Basics, Continued

• Can edit multiple files by giving list of file names (e.g.,

vi file1 file2 ). :n cycles through files; :rew (“rewind”) to go back

to first. This allows making similar changes in several files, or cutting and

pasting text from one file to another.



CSCI 3294 October 4, 2010

Slide 13

Customizing vi

• Customizations go in .exrc (or, for vim , .vimrc and/or .gvimrc ) in

home directory. Several ways to use different options for different needs; one

involves starting vim with different configuration file

(vim -u someotherfilename ).

• Customizations can include settings of vi options, key mappings,

abbreviations, macros, etc., etc.

• The “sample programs” page (here) has a .vimrc file with the settings I

use for code (automatic indentation, etc.).

Slide 14

How is vim “Vi iMproved”?

• If you try plain vi (or vim in “compatibility mode”) — well, vim has a lot

more features. Partial list on next slide.

• vimtutor (from command line, not from within vim ) starts a tutorial.

• Online help with :help . :q to exit help. Not optimally organized, but not

bad for free software.

• If you must have something with little pictures across the top — gvim .

(Actually might be useful while learning.)

http://www.cs.trinity.edu/~bmassing/Classes/CS3294_2010fall/SamplePrograms/


CSCI 3294 October 4, 2010

Slide 15

How is vim “Vi iMproved”?, Continued

• “Visual mode” (to select text to delete/yank/etc.). v to start, move cursor to

continue selecting. When the text you want is selected, d to delete, y to yank,

: to start a : command (e.g., :s to search and replace).

:help visual-mode for more info.

• Syntax highlighting. Can be based on filename’s extension, different for

different types of files. :help syntax for more info.

• Automatic indenting of code. :help C-indenting for more info.

• Multiple “windows”. :help split for more info.

• Record sequences of commands and play back. :help record for more

info.

• “diffs” mode. Start it with vimdiff file1 file2 (-o to split vertically

rather than horizontally).

Slide 16

emacs

• emacs is (IMO) the other major player in the text-editor wars. May be more

powerful and customizable overall. Some other programs (e.g., bash ) use

some of the same key bindings.

• Add-ons available to do — “everything”? Maybe! (Try <ESC>-x doctor .

ctrl-x ctrl-c to quit.)

Add-ons/customization are done with Lisp code (similar to Scheme).

• Online help available — ctrl-H . ctrl-H T starts a tutorial.

• If you must have something with little pictures across the top — actually these

days emacs started in a graphical environment has that. If you want the

old-style text-only interface, use the command-line switch -nw . (There is also

xemacs , but it’s a different code base.)



CSCI 3294 October 4, 2010

Slide 17

More Unsolicited Advice

• Both vim and emacs are powerful editors and may be worth the trouble to

learn — unless you plan to do all or most of your editing with programs that

have their own editor. If nothing else, they will show you a different way of

doing things! My advice is to try both and see if one of them appeals to you.

• As with other UNIX things, a good way to learn them is incrementally — learn

a few things, practice them, then learn a few more. The online help/tutorials

are good sources of new things to try. So is your local expert. A good

approach is to think of something you do often and find tedious, and try to find

a way to make it easier / faster.

Slide 18

Minute Essay

• What text editor do you currently use under Linux? What do you like/dislike

about it?


