
CSCI 3294 August 31, 2016

Slide 1

Administrivia

• As noted in e-mail, I put a link in TLEARN to the course Web page, so you

can find it that way if that’s easier to remember.

• For minute essays, put “minute essay” and the course name or number in the

subject line. (Most class days I teach multiple courses, so this helps me

quickly and reliably pick out the minute essays for each one.)

You can ask me anything course-related, but if your question needs a quick

reply, please put “urgent” in the subject line.

• Homework 1 on the Web; due next week.

Note request to tell me about collaboration. I will fill in details probably

tomorrow and send mail.

• Slides from Monday expanded to include some of what was mentioned in

class.

Slide 2

Minute Essay From Last Lecture

• What are the implications of “everything’s a file”?

C low-level library functions for working with many sources of input and output

are “the same” whether applied to regular file or device file or whatever — e.g,

read to read, write to write.

• If everything is in a single hierarchy, how does the O/S know that different

parts should be operated on differently (e.g., different physical devices)?

Single hierarchy can (and usually does) encompass multiple filesystems —

e.g., disk filesystem such as EXT4 and /proc pseudo-filesystem. Library

functions such as read make system calls, which in turn call appropriate

device driver.

• Not in minute essays but: Mystery of man -a? Behavior has changed with

this year’s build: In previous versions, q takes you out of one man page and

into the next if more than one. Now brings up a prompt for what to do next. (!)

CSCI 3294 August 31, 2016

Slide 3

Starting a Shell

• From the console, type ctrl-alt-Fn, where n is . . .

Well, it used to be 1 through 6, with the graphical console accessible via

ctrl-alt-F7. Now the graphical console is at ctrl-alt-F1 and the virtual consoles

are at ctrl-alt-F2 through ctrl-alt-F6.

• From a graphical environment, start a “terminal emulator” (xterm, gterm,

etc.).

• From a Windows system, run putty.

• Other ways (log in remotely with ssh, . . .)

Slide 4

A Little About Shells

• Several choices; most commonly used are probably bash and tcsh.

(There are others! This is UNIX. zsh and ksh are two I’ve heard of.)

By default, you get the one in your entry in the password file.

• How to find out what that is? echo $SHELL. (This displays the

environment variable SHELL. More about those later.)

• How to change? chsh command on some systems; on others, can only be

changed by administrator.

Or start a different one by typing its name, like any other command.

• Following discussion is about bash, but many other shells offer similar

functionality.

CSCI 3294 August 31, 2016

Slide 5

What Your Shell Does With What You Type

• Shell provides in-place editing (arrow and other keys), command history, tab

completion of filenames, etc. — until you press “return”.

• Shell then processes command line — expands wildcards and references to

variables, “tokenizes” command into commandname and parameters.

• Shell then either processes command (if a builtin), or locates executable in

“search path” (PATH environment variable) and forks off a new process.

• Command’s return code then available via shell variable.

• (Aside: Wonder what a simple shell program looks like? Look at first

programming homework for CSCI 3323 . . .)

Slide 6

What bash Does With What You Type — In-Place

Editing

• Simple editing — left and right arrows; ctrl-a, ctrl-e, etc. Also ctrl-u for “line

kill” and ctrl-k for “delete to end of line”.

• Command history — move forward/back with up and down arrows, search

with ctrl-r.

• Tab completion — for filenames, command names, etc.

• Read about bash and/or readline — man and info pages for more

info. (If you ever write a program that needs command-line functionality,

readline library is useful.)

CSCI 3294 August 31, 2016

Slide 7

What bash Does With What You Type — Processing

Command Line

• Shell takes completed line and expands filename wildcards, references to

variables (more about both in next slides), “tokenizes” command into

commandname and parameters, splitting (by default) at whitespace.

• If that’s not what you want — e.g., to include a space in a filename, inhibit

expansion of filename wildcards, etc. — use escape character (backslash) or

quotes. Single quotes inhibit all of this, double quotes all but variable

substitution.

Slide 8

What bash Does With What You Type — Processing
Command Line

• Shell locates command. Two cases:

– Builtin command — shell executes directly.

– External command — shell finds an executable by looking in “search path”

(PATH environment variable) and forks off a new process.

(Why the distinction? Some things can’t reasonably by done in a new (“child”)

process!)

(This ignores alias and shell functions. Next time!)

• Command’s return code then available via shell variable $?.

(Why would anyone care? Useful in writing scripts.)

(Where does the return code come from? whatever is returned by program —

e.g., from C program’s main.)

CSCI 3294 August 31, 2016

Slide 9

What bash Does With What You Type — Special Keys

• Notice that some keys have meanings other than what Windows users are

used to:

• ctrl-c interrupts current process (technically, sends it a particular signal).

• ctrl-d signals “end of file” for input from keyboard. Can use this is programs

that read from stdin. In a shell, means “exit”, though you can override this.

• ctrl-s may “lock” input and output until ctrl-q is entered. Depends on terminal

emulator. Useful to know if it ever happens!

• ctrl-z suspends current process. (We talked about this a little in class; I’ll

review later.)

Slide 10

Environment Variables

• Associated with a process (e.g., a shell) there can be “environment variables”.

Useful as another way (in addition to command-line arguments, input from

file/keyboard, etc.) of giving process information.

• Some variables of interest — PATH, SHELL, HOME, USER.

• To display current value, printenv FOO or echo $FOO.

• To set value, FOO=value (no spaces) in bash.

• To make value available to other commands, export FOO.

CSCI 3294 August 31, 2016

Slide 11

Filename Expansion

• You probably already know about using * as a wildcard for specifying one or

more files. Other options too — “filename expansion” section in full bash

manual or info pages.

• echo can be used to check what a particular expression expands to.

Slide 12

Minute Essay

• How is the pace of the class so far? too fast (too much new-to-you info), too

slow (too little new-to-you info), . . . ?

