
CSCI 3294 September 7, 2016

Slide 1

Administrivia

• Homework 1 was due Friday, but — two problems added, due date moved to

next week.

• Readings updated to be more targeted.

Slide 2

Minute Essay From Last Lecture

• “What goes into writing a shell?”

At a minimum, parsing command and arguments and starting a new program

with those arguments. Can be quite simple — first homework in O/S asks

students to write one (or fill in blanks anyway).

Beyond that . . . Possibly a lot! consider the features discussed so far.

Enhancing the simple-minded O/S-class shell can be a fun project.

CSCI 3294 September 7, 2016

Slide 3

Processes and Job Control, Revisited

• “The” shell (okay, there are several, but all that I know of) starts a new process

for each command. Normally runs “in the foreground” (of the login session).

• Or you can start it “in the background” by putting a & after the command. You

can also suspend the foreground process with ctrl-Z. (Useful if you want to get

back to a command prompt.) Restart a suspended process with ctrl-Z, or put

it in the background with bg.

• Background and suspended processes get a number, which you can show

with jobs. You can use this number with fg, bg, or kill.

Slide 4

Shell Customizations

• At startup, shell reads in various configuration files (see man page for

details). At least one will be in your home directory. For bash, .bashrc is

read for all shells and .bash_profile when it’s a “login shell” (e.g., ssh

session, but not terminal window).

• In these files, you can

– Define/redefine environment variables. (e.g., PATH, PS1). For bash, be

sure to export them. Can define new ones (I find this useful).

– Set various shell options and variables.

– Define aliases/functions.

– Invoke other commands (e.g., umask to set default file permissions, or

module load (later).

• Caution: The default setup on our lab machines is somewhat elaborate.

Originally designed to support diverse UNIX-like enviroments (Linux, Mac

CSCI 3294 September 7, 2016

Slide 5

OS X, etc.) and still in use although currently only needs to support Linux.

Look at ˜defaults/system/SYSTEM.bashrc for details.

Slide 6

Environment Variables

• Some we’ve mentioned already — e.g, PATH. Others we haven’t (e.g., PS1).

• For bash, be sure to export them so they’re available to called programs.

• Can also define new ones (I find this useful).

CSCI 3294 September 7, 2016

Slide 7

Shell Options and Variables

• set and shopt let you set various shell variables and options.

• Details in man page or manual, but some I find useful:

set -o noclobber

set -o ignoreeof

shopt -s histappend

Slide 8

Shell Aliases and Functions (bash)

• Aliases are simple substitution, no parameters. E.g.

alias lt=’ls -ltF’

alias google=’lynx http://www.google.com’

• Functions can have positional parameters. E.g.,

function cd-and-show() { cd $1 ; pwd ; ls; }

CSCI 3294 September 7, 2016

Slide 9

Another bash Feature — Directory Stack

• bash maintains a stack of directories. Use commands pushd, popd,

dirs to manipulate it.

• Very useful (I think!) if you want to navigate from one deeply-nested

subdirectory to another without losing your place.

Slide 10

I/O Redirection

• In programming classes I talk about “reading from standard input” (stdin)

rather than “reading from the keyboard”, and “writing to standard output”

rather than “writing to the screen”. Why?

CSCI 3294 September 7, 2016

Slide 11

I/O Redirection, Continued

• stdin (standard input) can come from keyboard, file, or inline in shell script.

• stdout and stderr (standard output, error) can go to terminal or file

(overwrite or append), separately or together. (Syntax depends in part on

which shell you’re using.)

• How is this useful? (e.g., in program development? testing?)

• OR — remember quotation from first class?

“Write programs that do one thing and do it well. Write programs to work

together. Write programs to handle text streams, because that is a universal

interface.”

Slide 12

Pipes

• “Pipes” provide one-way communication between programs — output of

program A becomes input of program B.

• Key component of “the UNIX philosophy” — emphasis on providing a toolkit of

small programs, mechanisms for combining them.

• “Filters” are programs designed to work this way, and there are lots of them

(next time). less and more also useful.

CSCI 3294 September 7, 2016

Slide 13

Minute Essay

• What (if anything) has been noteworthy about the first homework?

