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Administrivia

• Homework 1 was due Friday, but — two problems added, due date moved to

next week.

• Readings updated to be more targeted.
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Minute Essay From Last Lecture

• “What goes into writing a shell?”

At a minimum, parsing command and arguments and starting a new program

with those arguments. Can be quite simple — first homework in O/S asks

students to write one (or fill in blanks anyway).

Beyond that . . . Possibly a lot! consider the features discussed so far.

Enhancing the simple-minded O/S-class shell can be a fun project.
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Processes and Job Control, Revisited

• “The” shell (okay, there are several, but all that I know of) starts a new process

for each command. Normally runs “in the foreground” (of the login session).

• Or you can start it “in the background” by putting a & after the command. You

can also suspend the foreground process with ctrl-Z. (Useful if you want to get

back to a command prompt.) Restart a suspended process with ctrl-Z, or put

it in the background with bg.

• Background and suspended processes get a number, which you can show

with jobs. You can use this number with fg, bg, or kill.
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Shell Customizations

• At startup, shell reads in various configuration files (see man page for

details). At least one will be in your home directory. For bash, .bashrc is

read for all shells and .bash_profile when it’s a “login shell” (e.g., ssh

session, but not terminal window).

• In these files, you can

– Define/redefine environment variables. (e.g., PATH, PS1). For bash, be

sure to export them. Can define new ones (I find this useful).

– Set various shell options and variables.

– Define aliases/functions.

– Invoke other commands (e.g., umask to set default file permissions, or

module load (later).

• Caution: The default setup on our lab machines is somewhat elaborate.

Originally designed to support diverse UNIX-like enviroments (Linux, Mac



CSCI 3294 September 7, 2016

Slide 5

OS X, etc.) and still in use although currently only needs to support Linux.

Look at ˜defaults/system/SYSTEM.bashrc for details.
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Environment Variables

• Some we’ve mentioned already — e.g, PATH. Others we haven’t (e.g., PS1).

• For bash, be sure to export them so they’re available to called programs.

• Can also define new ones (I find this useful).
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Shell Options and Variables

• set and shopt let you set various shell variables and options.

• Details in man page or manual, but some I find useful:

set -o noclobber

set -o ignoreeof

shopt -s histappend
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Shell Aliases and Functions (bash)

• Aliases are simple substitution, no parameters. E.g.

alias lt=’ls -ltF’

alias google=’lynx http://www.google.com’

• Functions can have positional parameters. E.g.,

function cd-and-show() { cd $1 ; pwd ; ls; }
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Another bash Feature — Directory Stack

• bash maintains a stack of directories. Use commands pushd, popd,

dirs to manipulate it.

• Very useful (I think!) if you want to navigate from one deeply-nested

subdirectory to another without losing your place.
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I/O Redirection

• In programming classes I talk about “reading from standard input” (stdin)

rather than “reading from the keyboard”, and “writing to standard output”

rather than “writing to the screen”. Why?
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I/O Redirection, Continued

• stdin (standard input) can come from keyboard, file, or inline in shell script.

• stdout and stderr (standard output, error) can go to terminal or file

(overwrite or append), separately or together. (Syntax depends in part on

which shell you’re using.)

• How is this useful? (e.g., in program development? testing?)

• OR — remember quotation from first class?

“Write programs that do one thing and do it well. Write programs to work

together. Write programs to handle text streams, because that is a universal

interface.”
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Pipes

• “Pipes” provide one-way communication between programs — output of

program A becomes input of program B.

• Key component of “the UNIX philosophy” — emphasis on providing a toolkit of

small programs, mechanisms for combining them.

• “Filters” are programs designed to work this way, and there are lots of them

(next time). less and more also useful.
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Minute Essay

• What (if anything) has been noteworthy about the first homework?


