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Administrivia

• Reminder: Homework 1 due Wednesday at 5pm. Hardcopy please.
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Minute Essay From Last Lecture

• “Surprising how many options a simple command (date) can have!”

• Lots of ways to terminate processes.

(kill versus kill -9)
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Pipes and Filters, Recap/Revisited

• Pipes allow you to connect output of one program to input of another. (There

are also “named pipes” that work similarly and are persistent as opposed to

single-use.)

• They’re particularly attractive when combined with “filter” programs — and

UNIX has lots of them, some of which seem kind of silly except for how well

they work as building blocks.
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Some Filters

• head, tail.

• sort, uniq.

• grep — search for text (or regular expression — more later).

• wc — count characters, words, lines.

• tr — “translate”. Good for converting, e.g., upper-case to lower-case.

• cat (concatenate — one or more inputs to output).

• tee — duplicates input. Good for capturing output to a file while also

displaying it onscreen.
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Examples

• Find all processes that belong to your username:

ps aux | grep $USER

• Find all users who are running processes on the system:

ps aux | awk ’{ print $1 }’ | sort | uniq

• Generate a list of machines that are “up”:

ruptime | grep up | awk ’{print $1}’

(Unfortunately this omits some machines, such as the dias cluster — different

subnetwork.)
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More Filters — sed

• sed — “stream editor” — non-interactive program, by default does not edit in

place, but works as a filter, transforming input to produce output. Especially

useful with regular expressions (later), and in manipulating variables within a

command (later).

• Some simple uses on next slide, with command inline. For more complicated

edits, can put command(s) in a file.
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Simple Examples of sed

• Search and replace:

sed ’s/old/new/g’ infile > outfile

• Delete lines containing some string:

sed ’/this/d’ infile > outfile

(How else could you do this?) (grep -v!)
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More Filters — awk

• awk — implementation of programming language AWK — “pattern scanning

and processing language” (named after its inventors — as mentioned in its

man page).

• Lines of AWK program specify pattern and action. (Can also include function

definitions.)

• Basic processing — split each line of input (“record”) into “fields”, compare to

patterns in program, execute actions for any patterns that match.

• Some simple uses on next slide, with command inline. As with sed, for more

complicated edits, can put command(s) in a file.
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Simple Examples of awk

• Print selected fields from input (as in examples from last time).

• Print selected lines of input:

awk ’/this/’ infile

(How else could you do this?) (grep)
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Still More Filters, and Other Useful Commands

• diff — compare files or directories. (A good use — “regression testing” of

programs.)

• xargs — “build and execute command lines from standard input”.

My standard(?) silly(?) example of the power of the command line:

ps aux | grep $USER | awk ’{print $2}’ | xargs kill
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Still More Useful Commands — find

• Very powerful/flexible, though there are so many options you probably won’t

remember them all. man page is useful if daunting! Simple examples:

• Find all files in the current directory modified in the last week.

find . -mtime -7

• Find all files in your home directory whose name contains hello.

find $HOME -name "*hello*"

(Double quotes are needed so shell doesn’t try to expand wildcard.)
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find, A Bit More

• Summarizing and simplifying a bit from the man page, arguments to find

consist of paths, “options”, “tests”, “actions”, and “operators”.

• Path(s) come first — where you want to search.

• “options” are next and apply to whole command, e.g. -maxdepth.

• Then there are “tests” (search criteria), “actions” (what you want to do with

files that match — default is to print name), and “operators” (such as logical

and and or) connecting them. Examples on next slides . . .
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Examples of find

• Find all files in the current directory and subdirectories that end in .bak and

remove them.

find . -name "*.bak" -exec rm {} \;

Here, -name is a “test” and exec an “action”.

• As above, but prompt before executing each rm:

find . -name "*.bak" -ok rm {} \;

Here the “action” is -ok. (Might seem like you should be able to just use

rm -i, but that doesn’t work.)
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More Examples of find

• Find files modified in last 24 hours and sort by modification time:

find . -mtime -1 -type f | xargs ls -lt

Here there are two “tests” (for time and type) and the default “action” (print)

and we pipe into xargs

• But the above also lists files in .cache, which we may not care about. To

exclude them, and also those in mozilla (should go all on one line):

find . -name .cache -prune

-o -name .mozilla -prune

-o -mtime -1 | less

This has three test-plus-action clauses, connected by -o (logical or) — two to

tell find not to descend into directories we don’t want, plus one that does

what we want to the remaining files.
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Minute Essay

• What command line could you use to count the number of aliases in your

.bashrc file?
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Minute Essay Answer

• One possible answer:

grep alias .bashrc | wc -l


