
CSCI 3294 September 14, 2016

Slide 1

Administrivia

• Reminder: Homework 1 due today, 5pm. Hardcopy please.

• Homework 2 on the Web. Due in a week.

• Notes from last time updated to include more complicated example of find.

(Review.)

Slide 2

Command Substitution

• Can “inline” output of one command as parameters of another using

backquotes. Example:

vim ‘find . -name "*.c"‘

or use newer bash syntax

vim $(find . -name "*.c")

• The “inlined” command can even be a pipeline. Example:

ls -ld ‘echo $PATH | sed ’s/:/ /g’‘

• (Notice that these are backquotes, not single quotes!)

CSCI 3294 September 14, 2016

Slide 3

Two More Useful Commands

• basename and dirname split up pathname into “base” (last level of path)

and rest of path.

• Very helpful in combination with command substitution, especially in scripts.

Slide 4

Shell Input as a Programming Language

• What bash understands is in a sense a programming language, with the

shell as its interpreter:

– Variables (usually untyped).

– Expressions (arithmetic and logical).

– Conditionals (if/then/else) and loops.

– Functions.

• I will talk about bash, but most shells provide similar functionality, just

sometimes with different syntax.

CSCI 3294 September 14, 2016

Slide 5

Shell Input as a Programming Language — the Good

• Interactive shells are a kind of REPL (read, evaluate, print loop) for the shell’s

language. So you can use the various features interactively or use them to

write “scripts” — in the same way you can test out ideas in Scala’s REPL and

then use them in programs (except that the REPL is mostly useful for

testing/development, whereas using shell features such as loops interactively

can be useful).

• Any UNIX/Linux system will have a shell of some sort, while which “real”

programming languages are available might vary.

Slide 6

Shell Input as a Programming Language — the Bad

• Writing portable scripts is tough. Sticking to the sh subset of bash helps, as

does avoiding GNU-only commands and extensions, but how to do

that . . . (It’s a little like writing portable C.)

• What you can do is somewhat limited, and scripts of any size are apt to be

ugly.

• Advice: For long and complex scripts, a scripting language such as Perl or

Python may be a better choice than a shell script.

CSCI 3294 September 14, 2016

Slide 7

Shell Input as a Programming Language — the Ugly

• Dealing with spaces (in filenames, e.g.) is a huge pain. Rules for quoting are

tricky, and sometimes it seems the only way to get it right is to just try things

until something works. (Yuck!)

• There are many weirdnesses having to do with when subshells are created,

for example the behavior of while and shell variables (more later).

Slide 8

Shell Scripts

• A “shell script” is just a sequence of things you could type at the shell prompt,

collected in a (text) file.

• Normally, first line of script is #! followed by path for shell (/bin/bash,

e.g.), and the file is marked “executable” (with chmod). But you can also

execute commands in file anyfile via sh anyfile.

• With the exception of the first line, lines starting with # are comments.

CSCI 3294 September 14, 2016

Slide 9

Shell Variables

• Define/assign variables with, e.g., myvar="hello". (Notice absence of

spaces.)

• Reference with, e.g., $myvar.

• What’s the difference between these and “environment variables” already

mentioned? Shell variables are local to the shell, not passed on to child

processes. Distinction is somewhat blurred in Bourne shells. Convention is

that environment variable names are all caps.

Slide 10

Shell Functions and Parameters

• Define functions as described previously — function followed by name,

parentheses, then function definition in curly brackets. Separate/end

commands with ; or newlines.

• Parameters for functions and shell scripts are positional — $0 for function

name, then $1, etc. $* is a list of all parameters; $# is the count of

parameters, not including $0.

• Call functions or shell scripts by giving name and then parameters, separated

by whitespace. (If a parameter should include whitespace, use quoting or

escape characters.)

(Example in “sample programs”.)

CSCI 3294 September 14, 2016

Slide 11

Conditionals

• Basic syntax for if/then/else:

if command

then list-of-commands

else list-of-commands

fi

Which branch is taken depends on return code from command after if — 0

considered “true”, other values “false”.

• Probably the most common command test (commonly abbreviated as

square brackets). Many options. Example:

if [-z "$1"]

then echo Usage: ‘basename $0‘ someparameter; exit

fi

• case (like C switch) also available.

Slide 12

Loops

• Basic syntax for while loops:

while command

do list-of-commands

done

Continues until return code from command after while is non-zero.

• Basic syntax for for loops:

for var in list-of-values

do list-of-commands

done

• There’s also until, which executes until the command returns a non-zero

(false).

CSCI 3294 September 14, 2016

Slide 13

Loops — Examples

• A silly example (runs until interrupted):

while (true)

do

date ; sleep 1

done

• Another somewhat silly example:

for n in ‘seq 0 5‘

do

ssh janus0$n date

done

Slide 14

More Examples

• Rename all .htm files in the current directory to .html (-v isn’t really

necessary but does show you what’s being done):

for f in ‘ls *.htm‘

do

mv -v $f ‘basename .htm‘.html

done

• Descend into each of several subdirectories and launch a subshell (exit to

move on):

for d in d1 d2

do

pushd $d ; pwd ; ls ; bash ; popd

done

CSCI 3294 September 14, 2016

Slide 15

Other Features

• Evaluating (numeric) expressions — next time.

• Reading from standard input — next time.

Slide 16

Minute Essay

• The command ping -c 1 janus00 will test to see if janus00 is

network-reachable. Write a few lines of bash input that would let you “ping”

all the janus machines.

CSCI 3294 September 14, 2016

Slide 17

Minute Essay Answer

• One possible answer:

for n in ‘seq -w 0 21‘

do

ping -c 1 janus$n

done

• Another answer (contributed by a student one year):

for n in ‘ruptime | grep janus | awk ’{print $1}’‘

do

ping -c 1 janus$n

done

