
CSCI 3294 October 3, 2016

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Homework 3 grades mailed this afternoon. Sample solution online.

• As in e-mail — more time on Homework 5. Once a week is probably about

right for homework, and we won’t move through topics quite as fast.

Slide 2

Minute Essay From Last Lecture

• Most people came fairly close on the regular-expression question.

• A couple of people mentioned liking having two choices on problems (on

Homework 3).



CSCI 3294 October 3, 2016

Slide 3

Text Editors Revisited

• Some text editors (vim among them) allow you to “filter” text through an

external program.

• One thing this allows is building on-the-fly scripts — construct in vim the

lines to execute, then execute them with, e.g., :%!sh. (No need to save

unless you want to reuse another time.)

Slide 4

On-the-fly Scripts, Continued

• I like this “on-the-fly scripting” for various kinds of file moving/renaming

operations — use r!ls to get a list of files, “massage” with various editing

operations, then execute as above. I find this works well as a way of dealing

with filenames containing spaces — relatively easy to add double quotes

around names. A useful idiom employs a simple regex and & to reference the

matched text, e.g.,

:%s/.*/mv -v "&" targetdir/

• (Of course I could also use a bash loop, and sometimes I do, but —

whatever seems easiest for the particular use case?)



CSCI 3294 October 3, 2016

Slide 5

Text Editors Revisited, Continued

• I also use the ability to execute ranges of lines from within vim in

combination with programs/scripts that do arithmetic — for example, last step

in grading assignments is to total points and record, and if you keep scores as

text files (as I do) . . . (A little more about this later.)

• (Here too I could do this other ways! A traditional maxim about the scripting

language Perl is “there’s more than one way to do it” (TMTOWTDI), and —

true for the toolkit being discussed in this class as well?)

Slide 6

Text Editors Revisited, Continued

• I also use vim’s ability to record and play back “macros” fairly regularly. To

do this (on purpose): Start recording with q plus a single letter. End with

another q. Play back with @ and the single letter.

(Somewhere sometime I think I remember a comment to the effect that with

regard to certain repetitive tasks there were two kinds of people — the ones

who write macros and the ones who write a regular expression. I do both,

depending on the situation.)

• Examples another time maybe, but as a general comment — it can be tricky

to record in a way that will “play back” effectively, but when this works, it works

well.



CSCI 3294 October 3, 2016

Slide 7

Regular Expressions Revisited

• Regular expressions can be complex — constructs include “character

classes”, repetition, “or”, and back references.

• Can be very powerful but also very cryptic.

Slide 8

Regular Expressions — Examples

• As an example, consider taking a “class roster” as produced by TigerPaws

(showing student name, ID number, e-mail address, etc.,) and extracting from

it just the student’s last name and e-mail address. Here’s a vim command to

do that:

:%s/\(.\+\),.*\d\d\d\d\d\d\d\s\(\S\+\)\s.*/\2 \1/

(Admittedly it did take a few tries in class to get right!)

• As another example, consider revising that little script that computes factorials

using a recursive shell function. Really would be nice if it rejected invalid input

(and as we discovered in class, more than “nice” — it seems to “fork bomb”

the computer!).

(Revised script next time?)



CSCI 3294 October 3, 2016

Slide 9

Regular Expressions — Another Example

• One example from my own quirky ways of doing things:

• I use the old program procmail to filter incoming e-mail into “folders”

based on a variety of criteria, including header markup added by

spamassassin. (More about it later maybe.) It generates a log

describing what it does. I’m sometimes interested in, e.g., how many of the

incoming messages were identified as spam.

• So I can massage a copy of the log to get this information — extract the

“folder” lines, strip out unneeded fields, then use sort and uniq -c to get

the result I want. (I actually do this in vim but really I ought to write a script!)

(Details next time?)

Slide 10

Regular Expressions — Yet Another Example

• Another example from my own quirky ways of doing things:

• When I grade programs I make a text file for each student with point

deductions/additions and comments.

• How to total up these deductions/additions to compute score? A way that

occurs to me is to use regular expressions to pick out the lines +num and

-num and then construct an expression to pass to bc.

I wrote a script for this that I can invoke from within vim on a range of lines.

Quirky? Probably, but I like it!

(Details next time?)



CSCI 3294 October 3, 2016

Slide 11

Minute Essay

• I’ve described some of the ways I use some of the tools discussed. How

about you — anything we’ve talked about thus far that you’ve been able to put

to use to do something that helps you?


