
CSCI 3294 October 5, 2016

Slide 1

Administrivia

• Reminder: Homework 5 due Monday.

Slide 2

Minute Essay From Last Lecture

• Most people reported finding at least a few uses.

• Specific mentions were of vim features (it’s so much less painful if you know

more of them), awk(!), scripting to facilitate testing (for a project for the

compilers course), and various scripts to do things of personal interest/use.

• One person did mention that it’s not clear that the time invested in developing

scripts really pays off in terms of time saved doing repetitive tasks, but it does

feel more productive?



CSCI 3294 October 5, 2016

Slide 3

Text Editors and Regular Expressions, Once(?) More

• Updated versions of script to compute factorial on “sample programs” page,

one using a regular expression to check whether the argument is an integer

and another using another method.

• vim’s macro feature isn’t always a help (as shown last time, alas) but

sometimes is. A better “use case” for me: Add to my raw-HTML index file for

the “sample programs” page entries for recently-created examples.

• Last time I mentioned a script to summarize information from a procmail

log. Try that again?

• As one more example, I have a script I run from inside vim on those text files

containing homework grades and comments to compute score based on

perfect score and deductions/additions.

Slide 4

The make Utility

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.



CSCI 3294 October 5, 2016

Slide 5

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example on “sample programs” page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 6

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile.

make foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.



CSCI 3294 October 5, 2016

Slide 7

Defining Rules

• Define dependencies for a rule by giving, for each “target”, list of files it

depends on.

• Also give the list of commands to be used to recreate target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.

Slide 8

Phony Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.



CSCI 3294 October 5, 2016

Slide 9

Variables in Makefiles

• You can also define variables, e.g.:

– List of object files needed to create an executable. Then use this list to

specify dependencies, command.

– Pathname for a command, options to be used for all compiles, etc.

• Example:

OBJS = main.o foo.o

CFLAGS = -Wall -pedantic

main: $(OBJS)

gcc $(CFLAGS) -o main $(OBJS)

Slide 10

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O

• Or you could use

CFLAGS = -Wall -pedantic $(OPT)

OPT = -O

and then optionally override the -O by saying, e.g., make OPT=-g foo.



CSCI 3294 October 5, 2016

Slide 11

Minute Essay

• None really — just sign in, unless you have questions?


