
CSCI 3294 October 10, 2016

Slide 1

Administrivia

• Reminder: Homework 5 due today.

• Homework 6 on the Web; due a week from Wednesday (in deference to its

being midterms time . . .)

Slide 2

make — Recap

• Originally intended to make it easier to “build” large programming projects,

recompiling only as needed.

• Input is a text file with a textual representation of dependency graph (in terms

of targets and dependencies — “rules”) and “recipes” for re-creating targets.

Can be almost arbitrarily complex, including variable definitions, etc.

• make has many predefined rules (e.g., one to make foo from foo.c).

Many/most make copious use of variables (e.g., CFLAGS) to allow you to

supply some details. Use them when you can?

CSCI 3294 October 10, 2016

Slide 3

Implicit Rules (Pattern Rules)

• In addition to predefined implicit rules, you can define similar rules — e.g., a

makefile to compile .c files using the MPI C compiler:

MPICC = /usr/bin/mpicc

CCFLAGS = -O -Wall -pedantic

%: %.c

$(MPICC) -o $@ $(CCFLAGS) $<

$< is the first prerequisite (.c file here); $@ is the target.

(Note that this is for GNU make. Non-GNU make has a similar idea —

“suffix rules” — with slightly different syntax.)

(Note also that this is kind of a bogus example — you could get the same

effect by just setting CC to point to the compiler you want.)

Slide 4

Other Uses For make

• One of the more painful aspects to using make is getting the dependencies

right, in particular for #include’s in C programs. make can help with this,

together with compiler option -MM; partially discussed in GNU manual.

• make can be used to automate things other than compiling programs. It’s

particularly useful for defining implicit rules. For example, I like using it to

automate generating PDF (and HTML) from LATEX source, sometimes with

some preprocessing. (Possibly less necessary than it was, now that we have

pdflatex.)

CSCI 3294 October 10, 2016

Slide 5

Minute Essay

• Anything noteworthy about Homework 5?

