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Administrivia

• Reminder: Homework 5 due today.

• Homework 6 on the Web; due a week from Wednesday (in deference to its

being midterms time . . . )

Slide 2

make — Recap

• Originally intended to make it easier to “build” large programming projects,

recompiling only as needed.

• Input is a text file with a textual representation of dependency graph (in terms

of targets and dependencies — “rules”) and “recipes” for re-creating targets.

Can be almost arbitrarily complex, including variable definitions, etc.

• make has many predefined rules (e.g., one to make foo from foo.c).

Many/most make copious use of variables (e.g., CFLAGS) to allow you to

supply some details. Use them when you can?



CSCI 3294 October 10, 2016

Slide 3

Implicit Rules (Pattern Rules)

• In addition to predefined implicit rules, you can define similar rules — e.g., a

makefile to compile .c files using the MPI C compiler:

MPICC = /usr/bin/mpicc

CCFLAGS = -O -Wall -pedantic

%: %.c

$(MPICC) -o $@ $(CCFLAGS) $<

$< is the first prerequisite (.c file here); $@ is the target.

(Note that this is for GNU make. Non-GNU make has a similar idea —

“suffix rules” — with slightly different syntax.)

(Note also that this is kind of a bogus example — you could get the same

effect by just setting CC to point to the compiler you want.)
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Other Uses For make

• One of the more painful aspects to using make is getting the dependencies

right, in particular for #include’s in C programs. make can help with this,

together with compiler option -MM; partially discussed in GNU manual.

• make can be used to automate things other than compiling programs. It’s

particularly useful for defining implicit rules. For example, I like using it to

automate generating PDF (and HTML) from LATEX source, sometimes with

some preprocessing. (Possibly less necessary than it was, now that we have

pdflatex.)
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Minute Essay

• Anything noteworthy about Homework 5?


