
CSCI 3294 November 21, 2016

Slide 1

Administrivia

• Reminder: Project proposals due Monday after break.

• One more homework, due last day of class, asking you to reflect a little on the

class.

Slide 2

Minute Essay From Last Lecture

• Several people had done dynamic content for the Web in various ways, but

not all (three out of seven).

CSCI 3294 November 21, 2016

Slide 3

A Little About Perl — Introduction

• Initially designed in 1987. Wikipedia says not actually an acronym, but others

say it’s “Practical Extraction and Reporting Language”. Good name, whether

official or not.

• General-purpose, interpreted, imperative with support for object-oriented

programming.

• Draws heavily on shell-script language, awk, and sed. Focus is on text

manipulation.

• Core philosophy is “There’s More Than One Way To Do It” (TMTOWTDI).

• Once widely used for scripting, now maybe being supplanted by Python, but

there’s a lot of legacy code? Huge collection of third-party “modules” (Perl

equivalent of classes), available via CPAN.

• Also useful for command-line “one-liners”.

Slide 4

Perl — Getting Started

• Documentation available via perldoc. Start with

perldoc perlintro (my starting point for this lecture).

(Interestingly(?) enough, documentation often bundled with program source.

man perlpod for more information.)

• Run programs as, e.g., perl foobar.pl (typical extension), or use the

convention used in shell scripts (first line is #! followed by name of program

to use to process the rest) and mark executable.

CSCI 3294 November 21, 2016

Slide 5

Perl Basics

• Like Python and Scala, no explicit main function.

• “Block-structured” syntax, mostly familiar. Whitespace generally not

significant; statements end with semicolons; lines starting with # are

comments.

• (“Hello, world” example.)

• Good idea to start all programs with

use strict;

use warnings;

Slide 6

Perl — Data and Variables

• Data can be text strings, integers, or floating-point values. Strings in single or

double quotes (difference is similar to how it works in bash).

• Variables are not typed (who said “variables don’t have types, data does”?).

Need not be declared but arguably should be.

• Variables can be “scalars”, arrays, hashes, or references.

CSCI 3294 November 21, 2016

Slide 7

Perl “Scalars”

• Scalars represent single values (text string or number). Referred to as

$foobar.

• Need not be declared, but can be — my $foobar defines local variable.

Undeclared variables are global in scope. Reference as $foobar.

Slide 8

Perl — Arrays

• Expandable arrays, containing any kind of data, or a mix.

• Declare with, e.g., my @array, and initialize with list (e.g.,

(1, ’hello’, 2, ’bye’)).

• Reference individual elements as, e.g., $array[0]. @array means the

whole array “in list context” (Perl-speak, and no I’m not going to try to explain)

or length “in scalar context”.

• Much built-in support for working with arrays as lists: “slices”; push, pop,

shift, unshift; sort, reverse.

CSCI 3294 November 21, 2016

Slide 9

Perl — Hashes

• Expandable collections of key-value pairs, also containing any kind of data.

• Declare with, e.g., my %hash, and initialize with list (e.g.,

(’a’, 1, ’b’, 2)) or more explicitly(?) using => (e.g.,

(’a’ => 1, ’b’ => 2)).

• Reference individual elements as, e.g., $hash{’somekey’}.

• Get lists of keys or values with keys, values.

Slide 10

Perl — References

• Motivation for references — no way before they were added to the language

to represented nested data structures (i.e., list of lists).

• References are scalars, but their value is a reference to something else,

typically an array or hash.

• (Not something I remember details of, but perldoc perlreftut is a

good introduction.)

CSCI 3294 November 21, 2016

Slide 11

Perl — Special Variables

• “Default variable” $_. Makes for compact if cryptic code.

• Command-line arguments @ARGV.

• Environment variables %ENV.

• (Many more, often cryptic.)

Slide 12

Perl — Function Calls

• (Properly speaking, not functions but subroutines.)

• Call function/subroutine with name and arguments in parentheses as in other

language, or just with name following by arguments.

• Example — print followed by list of things to print.

CSCI 3294 November 21, 2016

Slide 13

Perl — Conditional Execution

• Basic syntax familiar but with a twist — if, elif, else. Also unless.

• Can also put if or unless after statement to do conditionally.

Slide 14

Perl — Repetition

• while syntax familiar; also until.

• C-like for but not used much.

• foreach on list/array, with or without explicit variable:

foreach (@a) { print $_; }

foreach my $el (@a) { print $el; }

Can usefully be combined with keys for hashes.

CSCI 3294 November 21, 2016

Slide 15

Perl — Operators

• Arithmetic operators familiar from other languages. Note that / is not integer

division as in many other languages.

• Relational operators — two sets, one for numeric comparisons and one for

strings.

• Boolean operators for and, or, not, two versions (C syntax and text names —

same meaning but precedence is different). Short-circuit behavior leads to an

idiomatic if startling syntax (next slide).

• Familiar syntax for assignments.

• . for string concatenation.

• Operator followed by = as in C.

Slide 16

Perl — Files and I/O

• “File handles” can be declared as scalars, or another convention is all-caps

global variables. STDIN, STDOUT, STDERR predefined.

• Create with open, e.g. (using short-circuiting behavior of or):

open (INFILE, "<", "in.txt") or die "error";

(or replace INFILE with my $in)

(">" or ">>" to open for write and append.)

• Read from input file with, e.g., my $line = <INFILE>; (Can use this

in test of while.) (chomp to discard end-of-line.)

• Write to output file with print with file handle as first parameter.

• close as in other languages.

CSCI 3294 November 21, 2016

Slide 17

Perl — Pattern Matching

• Good support for pattern matching and substitution. Based on regular

expressions, as discussed earlier this semester; same concepts, but as noted

syntax details can vary.

• Simple pattern matching for tests:

/foo/ true if $_ contains “foo”.

$a ˜= /foo/ true if $a contains “foo”.

• Simple search-and-replace:

s/foo/bar/ or s/foo/bar/g to operate on default variable.

$a =˜ s/foo/bar/ to operate on $a.

• As previously, use parentheses to define “capture groups”; reference as $1,

$2, etc.

Slide 18

Perl — Subroutines

• Define with sub, e.g., sub foo { }.

• Call with name followed by comma-separated list of arguments, with or

without parentheses.

• By default return nothing; use return to return a value (and usual syntax to

use it).

• How to declare and use arguments? no way to specify how many or what

type, but in subroutine @_ is list of arguments, so can write, e.g.,

my ($a, $b) = @_;

CSCI 3294 November 21, 2016

Slide 19

Perl — Modules

• Perl does provide support for object-oriented programming, via “modules”.

• Defining modules beyond the scope of this lecture.

• Using modules . . .

• Module names generally hierarchical, with components separated by :: e.g.,

MIME::QuotedPrint.

• use to give access to a module. Most modules have a man page with

examples of use.

• (An example — many modules in “Library for WWW in Perl” —

perldoc lwptut for introduction.)

Slide 20

Perl as a Scripting Language

• Perl can be useful as “glue” to assemble other programs. Fewer uses than in

shell scripts because Perl has so much (more) built in.

• But also supports running external programs — system (but does not

capture output), “backtick operator” (captures output), open with | (can

pass input, capture output).

CSCI 3294 November 21, 2016

Slide 21

Perl “One-Liners”

• Perl, like sed and awk, can be run with a flag (-e) that says “here is the

program in the command line”.

• Several examples in documentation (perldoc perlrun), concise but

fairly inscrutable. Or a Web search for “Perl one-liners” will likely find many

examples.

Slide 22

Minute Essay

• Have you worked at all with Perl? How about Python? Any thought about

these languages in which variables don’t have types?

• (And best wishes for a good holiday!)

