
CSCI 3294 August 29, 2018

Slide 1

Administrivia

• Reminder: Homework 1 due next Wednesday at 5pm. Hardcopy please.

Slide 2

Minute Essay From Last Lecture

• One person mentioned lots of commands not previously known about. That’s

a goal of this course: Likely you won’t remember details of many of the topics

we discuss, but what I hope you do remember is what’s available.

• Others mentioned questions I think are of general interest . . .

CSCI 3294 August 29, 2018

Slide 3

Uses for Links

• Symbolic links are similar to Windows “shortcuts”, so can give you a quick or

uniform way to access files. /usr/local/bin on our systems contains

many such links.

• Symbolic links can also be useful if you install multiple versions of a package;

if each is installed in a directory whose name includes the version and you set

up a “latest” link that points to the most recent one, users can access a

specific version or the most recent one (whatever it is).

Slide 4

Uses for Links

• Uses for hard links are less obvious, but a traditional use is to give multiple

names to the same file. On our systems, c++ and gcc++ are names for the

same file. (Curiously enough, cc is a symbolic link to gcc, however.)

• Digression/detail: UNIX/Linux filesystems usually keep track of what blocks

on disk make up a file by using an “i-node” (index node), which also stores

timestamps, permissions, etc. A file’s directory entry points to an i-node; for

hard links, each link points to the same i-node. ls -i lists i-nodes so you

can know . . .

CSCI 3294 August 29, 2018

Slide 5

Uses for Background Jobs

• One use is to launch a GUI-based program from a terminal window; by

running it in the background you avoid tying up the window, (Why would you

want to do that? maybe it’s easier than finding the program in the menus, or

maybe you want to look at any error messages it prints. Or this may provide

an easy way to make the program killable — to kill, bring it to foreground with

fg and interrupt with ctrl-c.)

• Another is to start a long-running program; this is most useful if you redirect

output (more about that soon).

• Yet another use, sort of, is if you’re logged in remotely and editing something

with vim; if you need to, say, consult a man page, rather than exiting vim

you can suspend it with ctrl-Z, consult the page, and then get vim back with

fg.

Slide 6

man pages, Revisited(?)

• SYNOPSIS section can be quite dense, but tries to specify in a standard

way all the options/arguments:

• Arguments in brackets are optional.

• Arguments separated by | are “either/or”.

CSCI 3294 August 29, 2018

Slide 7

Starting a Shell

• From the console, type ctrl-alt-Fn, where n is . . .

Well, it used to be 1 through 6, with the graphical console accessible via

ctrl-alt-F7. Now graphical consoles start at ctrl-alt-F1 (can be more than one if

more than one user logged in), and the virtual consoles start at ctrl-alt-F2 or

later, up through ctrl-alt-F6.

• From a graphical environment, start a “terminal” (a.k.a. terminal window,

terminal session, etc.).

• From a Windows system, run putty.

• Log in remotely with ssh.

Slide 8

A Little About Shells

• Several choices; most commonly used are probably bash and tcsh.

(There are others! This is UNIX. zsh and ksh are two I’ve heard of.)

By default, you get the one in your entry in the password file.

• How to find out what that is? echo $SHELL. (This displays the

environment variable SHELL. More about those later.)

• How to change? chsh command on some systems; on others, can only be

changed by administrator.

Or start a different one by typing its name, like any other command.

• Following discussion is about bash, but many other shells offer similar

functionality.

CSCI 3294 August 29, 2018

Slide 9

What Your Shell Does With What You Type — Overview

• Shell provides in-place editing (arrow and other keys), command history, tab

completion of filenames, etc. — until you press “return”.

• Shell then processes command line — expands wildcards and references to

variables, “tokenizes” command into commandname and parameters.

• Shell then either processes command (if a builtin), or locates executable in

“search path” (PATH environment variable) and forks off a new process.

• Command’s return code then available via shell variable.

• (Aside: Wonder what a simple shell program looks like? Look at first

programming homework for CSCI 3323 . . .)

Slide 10

What bash Does With What You Type — In-Place

Editing

• Simple editing — left and right arrows; ctrl-a, ctrl-e, etc. Also ctrl-u for “line

kill” and ctrl-k for “delete to end of line”.

• Command history — move forward/back with up and down arrows, search

with ctrl-r.

• Tab completion — for filenames, command names, etc. (Press tab key twice

to show choices, if more than one.)

• Read about bash and/or readline — man and info pages for more

info. (If you ever write a program that needs command-line functionality,

readline library is useful.)

CSCI 3294 August 29, 2018

Slide 11

What bash Does With What You Type — Processing

Command Line

• Shell takes completed line and expands filename wildcards, references to

variables (more about both in next slides), “tokenizes” command into

commandname and parameters, splitting (by default) at whitespace.

• If that’s not what you want — e.g., to include a space in a filename, inhibit

expansion of filename wildcards, etc. — use escape character (backslash) or

quotes. Single quotes inhibit all of this, double quotes all but variable

substitution.

Slide 12

What bash Does With What You Type — Processing
Command Line

• Shell locates command. Two cases:

– Builtin command — shell executes directly.

– External command — shell finds an executable by looking in “search path”

(PATH environment variable) and forks off a new process.

(Why the distinction? Some things can’t reasonably by done in a new (“child”)

process!)

(This ignores aliases and shell functions. Next time!)

• Command’s return code then available via shell variable $?.

(Why would anyone care? Useful in writing scripts.)

(Where does the return code come from? whatever is returned by program —

e.g., from C program’s main.)

CSCI 3294 August 29, 2018

Slide 13

What bash Does With What You Type — Special Keys

• Notice that some keys have meanings other than what Windows users are

used to:

• ctrl-c interrupts current process (technically, sends it a particular signal).

• ctrl-d signals “end of file” for input from keyboard. Can use this is programs

that read from stdin. In a shell, means “exit”, though you can override this.

• ctrl-s may “lock” input and output until ctrl-q is entered. Depends on terminal

emulator. Useful to know if it ever happens!

• ctrl-z suspends current process.

Slide 14

Environment Variables

• Associated with a process (e.g., a shell) there can be “environment variables”.

Useful as another way (in addition to command-line arguments, input from

file/keyboard, etc.) of giving process information.

• Some variables of interest — PATH, SHELL, HOME, USER.

• To display current value, printenv FOO or echo $FOO.

• To set value, FOO=value (no spaces) in bash.

• To make value available to child processes, export FOO.

CSCI 3294 August 29, 2018

Slide 15

Filename Expansion

• You probably already know about using * as a wildcard for specifying one or

more files. Other options too — “filename expansion” section in full bash

manual or info pages.

• echo can be used to check what a particular expression expands to.

Slide 16

Minute Essay

• How is the pace of the class so far? too fast (too much new-to-you info), too

slow (too little new-to-you info), . . . ?

