
CSCI 3294 September 10, 2018

Slide 1

Administrivia

• (None?)

Slide 2

Minute Essay From Last Lecture

• As of when I asked about modifying your .bashrc, many people hadn’t.

Apparently before I read responses, several did make changes for a course

(Dr. Lewis’s Big Data?).

• A few people had made additions on their own. Interesting how in this course

people come in with very different backgrounds, some knowing quite a bit

more than others. “It’s all good”?

CSCI 3294 September 10, 2018

Slide 3

Pipes and Filters, Recap/Revisited

• Pipes allow you to connect output of one program to input of another. (There

are also “named pipes” that work similarly and are persistent as opposed to

single-use.)

• They’re particularly attractive when combined with “filter” programs — and

UNIX has lots of them, some of which seem kind of silly except for how well

they work as building blocks.

Slide 4

Some Filters

• head, tail get first or last N lines.

• sort sorts, uniq discards (consecutive) duplicates.

• grep searches for text (or regular expression — more later).

(Name is from very old editor, where g/re/p meant “globally search for

regular expression and print”.)

• wc counts characters, words, lines.

• tr “translates”. Good for converting, e.g., upper-case to lower-case.

• cat “concatenate” one or more inputs to output.

• tee duplicates input. Good for capturing output to a file while also displaying

it onscreen.

CSCI 3294 September 10, 2018

Slide 5

Examples

• Find all processes that belong to your username:

ps aux | grep $USER

• Show how much space each subdirectory of your home directory is using,

sorted by size.

du -sk $HOME/* | sort -n

(Unfortunately this omits directories starting with a dot.)

Slide 6

More Filters — sed

• sed (“stream editor”) is a non-interactive editor. By default does not edit in

place, but works as a filter, transforming input to produce output. Especially

useful with regular expressions (later), and in manipulating variables within a

command (later).

• Some simple uses on next slide, with command inline. For more complicated

edits, can put command(s) in a file.

CSCI 3294 September 10, 2018

Slide 7

Simple Examples of sed

• Search and replace:

sed ’s/old/new/g’ infile > outfile

• Delete lines containing some string:

sed ’/this/d’ infile > outfile

(How else could you do this?) (grep -v!)

Slide 8

More Filters — awk

• awk is an implementation of programming language AWK (“pattern scanning

and processing language”, (named after its inventors — as mentioned in its

man page).

• Lines of AWK program specify pattern and action. (Can also include function

definitions.)

• Basic processing: Split each line of input (“record”) into “fields”, compare to

patterns in program, execute actions for any patterns that match.

• Some simple uses on next slide, with command inline. As with sed, for more

complicated edits, can put command(s) in a file.

CSCI 3294 September 10, 2018

Slide 9

Examples of awk

• Print selected lines of input:

awk ’/this/’ infile

(How else could you do this?) (grep)

• Find all users who are running processes on the local machine:

ps aux | awk ’{ print $1 }’ | sort | uniq

• Generate a list of machines that are “up”:

ruptime | grep up | awk ’{print $1}’

(Unfortunately this omits some machines, such as the dias cluster — different

subnetwork.)

Slide 10

Still More Filters, and Other Useful Commands

• diff compares files or directories. (A good use is “regression testing” of

programs.)

• xargs “builds and execute command lines from standard input”. My

standard(?) silly(?) example of the power of the command line:

ps aux | grep $USER | awk ’{print $2}’ | xargs kill

CSCI 3294 September 10, 2018

Slide 11

Still More Useful Commands — find

• Very powerful/flexible, though there are so many options you probably won’t

remember anywhere near all of them. man page is useful if daunting!

Simple examples:

• Find all files in the current directory and subdirectories modified in the last

week.

find . -mtime -7

• Find all files in your home directory and subdirectories whose name contains

hello.

find $HOME -name "*hello*"

(Double quotes are needed so shell doesn’t try to expand wildcard.)

Slide 12

find, A Bit More

• Summarizing and simplifying a bit from the man page, arguments to find

consist of paths, “options”, “tests”, “actions”, and “operators”.

• Path(s) come first — where you want to search.

• “options” are next and apply to whole command, e.g. -maxdepth.

• Then there are “tests” (search criteria), “actions” (what you want to do with

files that match — default is to print name), and “operators” (such as logical

and and or) connecting them.

Examples on next slides . . .

CSCI 3294 September 10, 2018

Slide 13

Examples of find

• Find all files in the current directory and subdirectories that end in .bak and

remove them.

find . -name "*.bak" -exec rm {} \;

Here, -name is a “test” and exec an “action”.

• As above, but prompt before executing each rm:

find . -name "*.bak" -ok rm {} \;

Here the “action” is -ok. (Might seem like you should be able to just use

rm -i, but that doesn’t work.)

Slide 14

More Examples of find

• Find files modified in last 24 hours and sort by modification time:

find . -mtime -1 -type f | xargs ls -lt

Here there are two “tests” (for time and type) and the default “action” (print),

and we pipe into xargs

• But the above also lists files in hidden directories .cache and .mozilla,

which we may not care about. To exclude them . . .

CSCI 3294 September 10, 2018

Slide 15

More Examples of find, continued

• . . . we could type

find . -name .cache -prune

-o -name .mozilla -prune

-o -mtime -1 -type f | xargs ls -ltd

(all on one line)

This has three test-plus-action clauses, connected by -o (logical or) — two to

tell find not to descend into directories we don’t want, plus one that selects

files we want.

(I use ls -ltd because the two “prune” clauses print the names of the

pruned directories, and without -d ls would print their contents.)

Slide 16

Minute Essay

• What command line could you use to count the number of aliases in your

.bashrc file?

CSCI 3294 September 10, 2018

Slide 17

Minute Essay Answer

• One possible answer:

grep alias .bashrc | wc -l

(You could add -w to grep — see man page for what that does.)

