
CSCI 3294 September 19, 2018

Slide 1

Administrivia

• Reminder: Homework 3 due Monday.

Slide 2

Minute Essay From Last Lecture

• Most people were fairly happy with the pace and workload. Seems to vary

depending on background — no surprise. I’ll probably continue as I have

been, but if you’re in the “this is too fast” group, feel free to interrupt me or ask

questions outside class.

• One person sent me one more way to find broken links:

find $(pwd) -type l | file -f - | \

grep "broken symbolic link" | awk { print $6 } | less

CSCI 3294 September 19, 2018

Slide 3

Minute Essay From Last Lecture, Continued

• One person asked about something to check for errors in shell scripts. I didn’t

find anything that would avoid the problem I had in class (using a variable not

previously defined), and indeed I don’t know that it’s possible — could be

defined externally — but I found a program called shellcheck (now

installed on the dias cluster) . . .

Slide 4

Things I Learned from ShellCheck

• This program complained about a lot of things I do in scripts. Some of them

surprised me. I checked some of the complaints against the POSIX definition

for shell command languages and discovered . . .

• You don’t need function to define a function, and indeed it’s nonstandard.

• Command substitution with backquotes is considered more or less obsolete;

the newer syntax I thought was specific to bash is standard in all but the

oldest shells.

• The syntax for arithmetic expansion that I thought was specific to bash is

also apparently standard.

• I’ve revised (most of) my notes and examples accordingly.

CSCI 3294 September 19, 2018

Slide 5

“Here” Documents

• We talked about redirecting input and output. One more option for input,

useful in scripts, is to get it from the script itself — “here” document. Example:

#!/bin/sh

simple example of sending mail from command line

mutt -s "a subject" bmassing << EOF

hello

I am here

who are you?

is this fun?

EOF

Slide 6

Return Codes, Revisited

• As previously mentioned: Conditional execution and while loops use as

their test a command; if it returns zero, then the condition is true, else false.

• Shell variable $? holds the return code from of the last command, if you want

to examine it more directly.

CSCI 3294 September 19, 2018

Slide 7

Other Useful Things

• Shell option -x can be helpful in debugging (set -x in script, or

bash -x myscript).

• getopt — process command-line options (to help you write scripts that

accept options in any order, in the same way most UNIX commands do).

• Remember pushd and popd, for temporarily changing to another directory

and coming back.

• Sometimes you want to just discard some output of a command; you can do

this by redirecting to /dev/null.

• Can chain commands with ; to do in sequence, or with && to only run

second if first succeeds, or with || to only run second if first fails.

Slide 8

Shells and Subshells

• In a typical shell, each command or shell script runs as a separate process.

(Why? Consider what you want to happen if the command crashes.)

• One result of this is that commands and scripts can’t generally make changes

in the shell (e.g., setting environment variables, or changing the current

directory).

• This is why, e.g., some functions such as cd are shell built-ins rather than

commands. (Try man cd.) (Yes, there’s also a /usr/bin/cd, but its

purpose seems a little obscure).

• But you can use scripts to make such changes, if instead of executing them

you “source” them (with source or .): This executes the commands in the

script in the current shell.

CSCI 3294 September 19, 2018

Slide 9

Shells and Subshells, Continued

• Can group sequence of commands with parentheses to run in subshell. Why?

could be useful to set environment variables local to the subshell.

• Can group sequence of commands with curly braces. Why? e.g., to run a

sequence of commands in the background.

Slide 10

Shell Scripts — “the Ugly”, Revisited

• If variables are set in a subshell their values disappear when it exits. An

example is piping something into a while read loop.

• How to fix? simplest way is just to find an alternative to piping (“here”

documents, maybe, or other input redirection).

The Advanced Scripting Guide has more about this in section 34.

CSCI 3294 September 19, 2018

Slide 11

Minute Essay

• Anything else we should discuss about shell scripts?

