
CSCI 3294 September 24, 2018

Slide 1

Administrivia

• Reminder: Homework 3 due today. “Programming” problems, so submit by

e-mail.

• Homework 4 on the Web; due next Monday.

Slide 2

Minute Essay From Last Lecture

• Can you multithread in shell scripts? Kinda sorta: In my usage

“multithreading” implies shared memory, and that’s not (as far as I know)

possible in shell scripts. But you can start multiple processes (e.g., running

some in the background with &) and wait for them to finish with wait.

• Do I have a list of “must have” shell scripts? I have some I use a lot, but most

of them are such crude hacks I hesitate to share them.



CSCI 3294 September 24, 2018

Slide 3

Why Text Editors?

• In traditional UNIXworld, everything is a text file (source code, configuration

files, e-mail, input to text-formatting programs, etc., etc.), so mastering a

cryptic but powerful “text editor” can pay off.

• Does this approach still make sense? Maybe, though you have to choose

your other tools carefully to get maximum payoff. But a determined person

can use the same text editor to write programs, compose e-mail messages,

“word process”, etc.

Slide 4

Which Text Editor?

• Traditionally a “religious war” topic, with vi and emacs having the most

supporters. Both very powerful and very widely available.

• There are others, but they may not be as close to universally available, and (I

think!) often are more novice-friendly than expert-friendly.



CSCI 3294 September 24, 2018

Slide 5

Which Text Editor?, Contined

• vi (or one of its clones) is slightly more universally available.

• Plain vi is lightweight but pretty primitive.

• vi under Linux is really vim, and has lots of extra features. Can be useful to

know which are not “real” vi in case you ever have to use real vi.

:set cp makes vim behave almost like “real” vi. (Try it sometime?)

Slide 6

Which Text Editor?, Continued

• emacs is almost as close to universally available and highly customizable —

can do almost anything (compile and test programs, send e-mail, etc.) from

within it. (An old joke claims that emacs is a wonderful operating system,

lacking only a good text editor. I say more “command shell” than O/S, but —

yeah.)

• Over the years people have written some truly, um, remarkable(?)

customizations/add-ons (in emacs’s version of the functional language Lisp).

• (If I had it to do over again, I might well choose emacs!)



CSCI 3294 September 24, 2018

Slide 7

vi Basics

• vi is “modal” — input mode and command mode. (A subset of command

mode is “ex mode”, where you enter commands understood by the line editor

ex. These are the ones that start with :.)

• You know how to start vi and do simple things. But if you normally use

almost nothing but insert mode, you aren’t using this tool to anywhere near its

potential. A little (more) learning may pay off!

Slide 8

vi Basics, Continued

• To move around, arrow keys usually work (and in vim you can use them in

insert mode). Old way — which always works, but requires command mode

— h, j, k, l. Does anyone still use those keys? Fanatical touch typists,

maybe!

• Scrolling up and down — ctrl-F and ctrl-B. Moving to start or end of

line — ˆ and $.

• Many other “cursor-movement” commands, e.g., w (next word) which can be

usefully combined with commands to do something (next slide).

• To find foo, /foo<CR>. (<CR> means “enter” here.) Repeat with

/<CR> (forward) or ?<CR> (backward), or n to repeat search in same

direction. Pressing * searches for the “word” under the cursor. (I only

discovered this relatively recently. I like it!)



CSCI 3294 September 24, 2018

Slide 9

vi Not-So-Basics

• A lot of vi functionality is built around the idea of combining commands to do

something (e.g., d to delete, y to “yank” (copy to buffer)) with commands that

move the cursor (e.g., w to move forward a word, $ to move to end of line).

• So, dw deletes a word, y$ copies text from cursor to end of line, etc. For

many of the commands, the letter twice applies it to a whole line (e.g., dd).

• Other useful ways to move the cursor: fc to move to next c, tc to move to

just before next c. Several more; in vim, :help cursor-motions to

learn more.

Slide 10

vi Basics, Continued

• Inserting text — a (after cursor) or i (after cursor), <ESC> to exit insert

mode.

• Deleting text — x to delete a character, dw to delete a “word”, dd to delete a

line.

• To undo most recent change, u. (vim supports multiple undo. Real vi does

not!)

• To read in file foo, :r foo.



CSCI 3294 September 24, 2018

Slide 11

vi Not-So-Basics

• . to repeat previous command. Precede any command with n to repeat it n

times (e.g., 10dd to delete 10 lines).

• Deleted text (with x, dw, dd) goes into a “cut/copy” buffer. p pastes it back

after the cursor, P before. To copy rather than delete, “yank” — yw, yy.

There are also 26 more buffers, referred to by lowercase letters. E.g., "ayy

to copy current line into buffer a. "ap to paste it back. (Yes, those are

unmatched double quotes.)

• cw to change a word, r to replace a single character, R to go into

overwrite/replace mode.

Slide 12

vi Not-So-Basics, Continued

• To work with blocks of text, can use ex commands that reference lines; this

works even with base vi but can be cumbersome.

• Most involve a “range of lines”, which can be can be one line, two lines with

comma between, or % for all lines. Can reference lines with:

– Absolute line numbers (:set nu to see line numbers). $ is last line.

– Relative line numbers — . is the current line, .1+ is the next line, etc.

– “Marks” (next slide).

• : range-of-lines d to delete lines. (They go into the “cut/copy” buffer and can

be retrieved with p or P.) Replace d with y to yank rather than delete.

• : range-of-lines mtarget-lineto move lines. Replace m with copy to copy.



CSCI 3294 September 24, 2018

Slide 13

vi Not-So-Basics, Continued

• Can “mark” lines (invisibly, bleah) with mc for any single letter c.

• Can then reference with ’c in commands on previous slide.

• Not very easy to use, but works even in base vi.

Slide 14

vi Not-So-Basics, Continued

• To search and replace, can use search (/), replace (cw), and repeat (.).

• Or use ex command s

: range-of-lines s/old/new/g

– range-of-lines is as before (% for all lines).

– old is a “regular expression” (can include wild-card-type expressions). Can

be very powerful, though syntax is cryptic! In vim, :help regexp to

read more. Basic idea is our next topic.

– Omit g to change only the first occurrence on each line. Add c to be

prompted before each change.

– Can use any character (not just /) to delimit old and new.



CSCI 3294 September 24, 2018

Slide 15

vi Not-So-Basics, Continued

• Another plus of vi (to its fans) is interoperability with other old-style UNIX

tools.

• : range-of-lines !pgm to “filter” range-of-lines using program pgm. E.g.,

:%!sort to sort the whole file.

• :r!pgm to insert output of pgm after current line. E.g., .r!ls to get a list

of files in the current directory.

Another way: Put a command to execute on a line and then use .!sh to

execute it and get its output.

Slide 16

vi Not-So-Basics, Continued

• Can edit multiple files by giving list of file names (e.g.,

vi file1 file2). :n cycles through files; :rew (“rewind”) to go back

to first. This allows making similar changes in several files, or cutting and

pasting text from one file to another.

• :bufdo applies a command to all files being edited. Could be useful for

search and replace across multiple files.



CSCI 3294 September 24, 2018

Slide 17

Customizing vi

• Customizations go in .exrc (or, for vim, .vimrc and/or .gvimrc) in

home directory. Several ways to use different options for different needs; one

involves starting vim with different configuration file

(vim -u someotherfilename). (Could make this a shell alias.)

• Customizations can include settings of vi options, key mappings,

abbreviations, macros, etc., etc.

• Examples on the “sample programs” page.

Slide 18

How is vim “Vi iMproved”?

• If you try plain vi (or vim in “compatibility mode”) — well, vim has a lot

more features. Partial list on next slide.

• vimtutor (from command line, not from within vim) starts a tutorial.

• Online help with :help. :q to exit help. Not optimally organized, but not

bad for free software.

• If you must have something with little pictures across the top — gvim.

(Actually might be useful while learning.)



CSCI 3294 September 24, 2018

Slide 19

How is vim “Vi iMproved”?, Continued

• “Visual mode” (to select text to delete/yank/etc.). v to start, move cursor to

continue selecting. When the text you want is selected, d to delete, y to yank,

: to start a : command (e.g., :s to search and replace).

:help visual-mode for more info.

• Syntax highlighting. Can be based on filename’s extension, different for

different types of files. :help syntax for more info.

• Automatic indenting of code. :help C-indenting for more info.

Helpful command is = to reindent according to current scheme. == to

reindent current line, gg=G to reindent all.

Slide 20

How is vim “Vi iMproved”?, Continued

• Multiple “windows”. :help split for more info.

• “Macros”: Can record sequences of commands and play back.

:help record for more info.

• “diffs” mode. Start it with vimdiff file1 file2 (-o to split vertically

rather than horizontally).



CSCI 3294 September 24, 2018

Slide 21

emacs

• emacs is (IMO) the other major player in the text-editor wars. May be more

powerful and customizable overall. Some other programs (e.g., bash) use

some of the same key bindings.

• Add-ons available to do — “everything”? Maybe! (Try <ESC>-x doctor.

ctrl-x ctrl-c to quit.)

Add-ons/customization are done with code in a dialect of Lisp.

• Online help available — ctrl-H. ctrl-H T starts a tutorial.

• If you must have something with little pictures across the top — actually these

days emacs started in a graphical environment has that. If you want the

old-style text-only interface, use the command-line switch -nw.

Slide 22

More Unsolicited Advice

• Both vim and emacs are powerful editors and may be worth the trouble to

learn — unless you plan to do all or most of your editing with programs that

have their own editor. If nothing else, they will show you a different way of

doing things! My advice is to try both and see if one of them appeals to you.

• As with other UNIX things, a good way to learn them is incrementally — learn

a few things, practice them, then learn a few more. The online help/tutorials

are good sources of new things to try. So is your local expert. A good

approach is to think of something you do often and find tedious, and try to find

a way to make it easier and/or faster.



CSCI 3294 September 24, 2018

Slide 23

Minute Essay

• What text editor do you currently use under Linux? What do you like/dislike

about it?


