
CSCI 3294 October 3, 2018

Slide 1

Administrivia

• Reminder: Homework 4 due today. Homework 5 due next Monday.

• Homework 3 grades mailed. Sample solution linked from “lecture topics”

page.

Slide 2

Minute Essay From Last Lecture

• Most people came fairly close on the regular-expression question.

• Most people had seen regular expression, usually in Scala.



CSCI 3294 October 3, 2018

Slide 3

Text Editors Revisited

• Some text editors (vim among them) allow you to “filter” text through an

external program.

• One thing this allows is building on-the-fly scripts — construct in vim the

lines to execute, then execute them with, e.g., :%!sh. (No need to save

unless you want to reuse another time.)

Slide 4

On-the-fly Scripts, Continued

• I like this “on-the-fly scripting” for various kinds of file moving/renaming

operations — use r!ls to get a list of files, “massage” with various editing

operations, then execute as above. I find this works well as a way of dealing

with filenames containing spaces — relatively easy to add double quotes

around names. A useful idiom employs a simple regex and & to reference the

matched text, e.g.,

:%s/.*/mv -v "&" targetdir/

• (Of course I could also use a bash loop, and sometimes I do, but —

whatever seems easiest for the particular use case?)



CSCI 3294 October 3, 2018

Slide 5

Text Editors Revisited, Continued

• I also use vim’s ability to record and play back “macros” fairly regularly. To

do this: Start recording with q plus a single letter. End with another q. Play

back with @ and the single letter.

(Somewhere sometime I think I remember a comment to the effect that with

regard to certain repetitive tasks there were two kinds of people — the ones

who write macros and the ones who write a regular expression. I do both,

depending on the situation.)

• It can be tricky to record in a way that will “play back” effectively, but when this

works, it works well.

• I use this sometimes when I need to make the same edit to several files.

Slide 6

Regular Expressions — Recap

• Regular expressions can be complex — constructs include “character

classes”, repetition, “or”, and back references.

• Can be very powerful but also very cryptic.



CSCI 3294 October 3, 2018

Slide 7

Regular Expressions — Example

• As an example, consider taking a “class roster” as produced by TigerPaws

(showing student name, ID number, e-mail address, etc.,) and extracting from

it just the student’s last name and e-mail address. Example line:

Lastname, Firstname M. 1234567 lastname@whatever SR New

Here’s a vim command to do that:

:%s/\(.\+\),.*\d\d\d\d\d\d\d\s\(\S\+\)\s.*/\2 \1/

(Admittedly it did take a few tries to get right!)

• Translation of expression being changed: Any number of characters up to a

comma (capture this as group 1); a comma, any number of characters, seven

digits plus a space/tab; one or more nonwhitespace characters (capture this

as group 2); a space/tab and any number of characters.

Slide 8

Regular Expressions — Example

• As another example, consider revising that little script that computes factorials

using a recursive shell function. Really would be nice if it rejected invalid

input.

• Can do this fairly easily with grep and regular expression. Package this as a

function in a separate file and “source” it from the factorial script. (See

“sample programs”.)



CSCI 3294 October 3, 2018

Slide 9

Scripts Versus Programs

• One of the parts of grading I’ve tried to semi-automate is adding up point

deductions and computing grade.

• For grading on paper, I wrote a script that takes a total number of points and a

list of deductions/additions and computes a total. I call it from vim to

compute and record. (This works because I keep grade information in text

files. I don’t like spreadsheets!)

• For grading electronically, at one time I had scripts that would take one of my

“scores and comments” files and compute a total from point

deductions/additions in the file, but at some point it got unwieldy, and I wrote a

program. (In Perl, if you’re curious. It seemed like a Perl kind of job?)

Slide 10

The make Utility

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

• (I think all of you have seen this, in CSCI 1120? but review.)



CSCI 3294 October 3, 2018

Slide 11

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example on “sample programs” page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 12

Useful Command-Line Options

• make without parameters makes the first “target” in the makefile.

make foo makes foo.

• make -n just tells you what commands would be executed — a “dry run”.

• make -f otherfile uses otherfile as the makefile.



CSCI 3294 October 3, 2018

Slide 13

Defining Rules

• Define dependencies for a rule by giving, for each “target”, list of files it

depends on.

• Also give the list of commands to be used to recreate target.

NOTE!: Lines containing commands must start with a tab character. Alleged

paraphrase from an article by Brian Kernighan on the origins of UNIX:

The tab in makefile was one of my worst decisions, but I just wanted to

do something quickly. By the time I wanted to change it, twelve (12)

people were already using it, and I didn’t want to disrupt so many

people.

Slide 14

Phony Targets

• Normally targets are files to create (e.g., executables), but they don’t have to

be. So you can package up other things to do . . .

• Example — many makefiles contain code to clean up, e.g.:

clean:

-rm *.o main

To use — make clean.



CSCI 3294 October 3, 2018

Slide 15

Variables in Makefiles

• You can also define variables, e.g.:

– List of object files needed to create an executable. Then use this list to

specify dependencies, command.

– Pathname for a command, options to be used for all compiles, etc.

• (Used in example.)

Slide 16

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• This can also make longer makefiles not as long. (Revised example.)



CSCI 3294 October 3, 2018

Slide 17

Minute Essay

• I’ve described some of the ways I use some of the tools discussed. How

about you — anything we’ve talked about thus far that you’ve been able to put

to use to do something that helps you?


