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Administrivia

• Reminder: Homework 5 due today. (E-mail.)

• Homework 6 on the Web, due next Wednesday.
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Minute Essay From Last Lecture

• Almost everyone is finding something useful, though exactly what and how

much varies. One person seems to be using a lot of what we’ve talked about

and says it’s speeding up his workflow. Good!

• One person mentioned that the course was helping her understand better

what’s happening in a terminal window. I hadn’t thought of that as a goal for

the course, but I should!
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Homework 3 Essays

• Several people mentioned that the problems were helpful in understanding

and/or fun. Good! A few mentioned liking having the option to make up one’s

own problem.

• One person commented on how much time he spent worrying about proper

use of quotes. Not atypical, sadly — it’s one of the uglier parts about writing

shell scripts.
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make — Recap

• Originally intended to make it easier to “build” large programming projects,

recompiling only as needed.

• Input is a text file with a textual representation of dependency graph (in terms

of targets and dependencies — “rules”) and “recipes” for re-creating targets.

Can be almost arbitrarily complex, including variable definitions, etc.

• make has many predefined rules (e.g., one to make foo from foo.c).

Many/most make copious use of variables (e.g., CFLAGS) to allow you to

supply some details. Use them when you can?

(Review slides from last time?)
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make — Overriding Variables at Runtime

• Something else that can be useful in makefiles is providing variables that can

be overridden at runtime. For example, if in the makefile you have

CFLAGS = -Wall -pedantic $(OPT)

OPT = -O

you can override $OPT with e.g., make OPT=-g foo.
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Implicit Rules (Pattern Rules)

• In addition to predefined implicit rules, you can define similar rules — e.g., a

makefile to compile .c files using the MPI C compiler:

MPICC = /usr/bin/mpicc

CCFLAGS = -O -Wall -pedantic

%: %.c

$(MPICC) -o $@ $(CCFLAGS) $<

$< is the first prerequisite (.c file here); $@ is the target.

(Note that this is for GNU make. Non-GNU make has a similar idea (“suffix

rules”) with slightly different syntax.)

(Note also that this is kind of a bogus example — you could get the same

effect by just setting CC to point to the compiler you want.)
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Other Uses For make

• One of the more painful aspects to using make is getting the dependencies

right, in particular for #include’s in C programs. make can help with this,

together with compiler option -MM. Discussed in some detail in GNU make

manual, under “Generating Prerequisites Automatically”.

• make can be used to automate things other than compiling programs. It’s

particularly useful for defining implicit rules. For example, I like using it to

automate generating PDF (and HTML) from LATEX source, sometimes with

some preprocessing. (Possibly less necessary than it was, now that we have

pdflatex.)
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Minute Essay

• Have you used make in another class? (I hear Dr. Fogarty uses it in some

classes, though he supplies the makefile(s)?)


