CSCI 3294 October 8, 2018

Administrivia

e Reminder: Homework 5 due today. (E-mail.)

e Homework 6 on the Web, due next Wednesday.

Slide 1

Minute Essay From Last Lecture

e Almost everyone is finding something useful, though exactly what and how
much varies. One person seems to be using a lot of what we’ve talked about
and says it's speeding up his workflow. Good!

e One person mentioned that the course was helping her understand better
Slide 2 what's happening in a terminal window. | hadn’t thought of that as a goal for
the course, but | should!

CSCI 3294 October 8, 2018

Homework 3 Essays

e Several people mentioned that the problems were helpful in understanding
and/or fun. Good! A few mentioned liking having the option to make up one’s
own problem.

e One person commented on how much time he spent worrying about proper
Slide 3 use of quotes. Not atypical, sadly — it's one of the uglier parts about writing
shell scripts.

make — Recap

e Originally intended to make it easier to “build” large programming projects,
recompiling only as needed.

e Input is a text file with a textual representation of dependency graph (in terms
of targets and dependencies — “rules”) and “recipes” for re-creating targets.
Slide 4 Can be almost arbitrarily complex, including variable definitions, etc.

e make has many predefined rules (e.g., one to make foo from foo. c).
Many/most make copious use of variables (e.g., CEFLAGS) to allow you to
supply some details. Use them when you can?

(Review slides from last time?)

CSCI 3294 October 8, 2018

-

make — Overriding Variables at Runtime

e Something else that can be useful in makefiles is providing variables that can
be overridden at runtime. For example, if in the makefile you have

CFLAGS = -Wall -pedantic $ (OPT)
OPT = -0
Slide 5 you can override $SOPT with e.g., make OPT=-g foo.

Implicit Rules (Pattern Rules)

e |n addition to predefined implicit rules, you can define similar rules — e.g., a
makefile to compile . c files using the MPI C compiler:

MPICC = /usr/bin/mpicc
CCFLAGS = -0 -Wall -pedantic

Slide 6

o°
o°
Q

$(MPICC) -o $@ $(CCFLAGS) $<

$< is the first prerequisite (. c file here); $@ is the target.
(Note that this is for GNU make. Non-GNU make has a similar idea (“suffix
rules”) with slightly different syntax.)

(Note also that this is kind of a bogus example — you could get the same

effect by just setting CC to point to the compiler you want.)

CSCI 3294 October 8, 2018

Other Uses For make

e One of the more painful aspects to using make is getting the dependencies
right, in particular for # include’s in C programs. make can help with this,
together with compiler option —MM. Discussed in some detail in GNU make
manual, under “Generating Prerequisites Automatically”.

Slide 7 e make can be used to automate things other than compiling programs. It's
particularly useful for defining implicit rules. For example, | like using it to
automate generating PDF (and HTML) from IATEX source, sometimes with
some preprocessing. (Possibly less necessary than it was, now that we have
pdflatex.)

e Have you used make in another class? (I hear Dr. Fogarty uses it in some
classes, though he supplies the makefile(s)?)

Slide 8

