
CSCI 3294 October 8, 2018

Slide 1

Administrivia

• Reminder: Homework 5 due today. (E-mail.)

• Homework 6 on the Web, due next Wednesday.

Slide 2

Minute Essay From Last Lecture

• Almost everyone is finding something useful, though exactly what and how

much varies. One person seems to be using a lot of what we’ve talked about

and says it’s speeding up his workflow. Good!

• One person mentioned that the course was helping her understand better

what’s happening in a terminal window. I hadn’t thought of that as a goal for

the course, but I should!

CSCI 3294 October 8, 2018

Slide 3

Homework 3 Essays

• Several people mentioned that the problems were helpful in understanding

and/or fun. Good! A few mentioned liking having the option to make up one’s

own problem.

• One person commented on how much time he spent worrying about proper

use of quotes. Not atypical, sadly — it’s one of the uglier parts about writing

shell scripts.

Slide 4

make — Recap

• Originally intended to make it easier to “build” large programming projects,

recompiling only as needed.

• Input is a text file with a textual representation of dependency graph (in terms

of targets and dependencies — “rules”) and “recipes” for re-creating targets.

Can be almost arbitrarily complex, including variable definitions, etc.

• make has many predefined rules (e.g., one to make foo from foo.c).

Many/most make copious use of variables (e.g., CFLAGS) to allow you to

supply some details. Use them when you can?

(Review slides from last time?)

CSCI 3294 October 8, 2018

Slide 5

make — Overriding Variables at Runtime

• Something else that can be useful in makefiles is providing variables that can

be overridden at runtime. For example, if in the makefile you have

CFLAGS = -Wall -pedantic $(OPT)

OPT = -O

you can override $OPT with e.g., make OPT=-g foo.

Slide 6

Implicit Rules (Pattern Rules)

• In addition to predefined implicit rules, you can define similar rules — e.g., a

makefile to compile .c files using the MPI C compiler:

MPICC = /usr/bin/mpicc

CCFLAGS = -O -Wall -pedantic

%: %.c

$(MPICC) -o $@ $(CCFLAGS) $<

$< is the first prerequisite (.c file here); $@ is the target.

(Note that this is for GNU make. Non-GNU make has a similar idea (“suffix

rules”) with slightly different syntax.)

(Note also that this is kind of a bogus example — you could get the same

effect by just setting CC to point to the compiler you want.)

CSCI 3294 October 8, 2018

Slide 7

Other Uses For make

• One of the more painful aspects to using make is getting the dependencies

right, in particular for #include’s in C programs. make can help with this,

together with compiler option -MM. Discussed in some detail in GNU make

manual, under “Generating Prerequisites Automatically”.

• make can be used to automate things other than compiling programs. It’s

particularly useful for defining implicit rules. For example, I like using it to

automate generating PDF (and HTML) from LATEX source, sometimes with

some preprocessing. (Possibly less necessary than it was, now that we have

pdflatex.)

Slide 8

Minute Essay

• Have you used make in another class? (I hear Dr. Fogarty uses it in some

classes, though he supplies the makefile(s)?)

