
CSCI 3294 October 17, 2018

Slide 1

Administrivia

• Reminder: Homework 6 due today. Submit by e-mail.

• Reminder: Homework 7 due Monday.

• Midterm grade summaries (to be) e-mailed.

Slide 2

Minute Essay From Last Lecture

• Many/most people usually use Google Docs, though some also use MS Word.

Most find the cloud-based nature of Docs appealing but find the application

kind of limited. One mentioned that he also found Word somewhat limited.

Another said he liked Word’s ease of use. (I say “until you try something

complicated”. Maybe just me.) One mentioned LibreOffice (Linux fan?).

• Many but not all had used LATEX. (That surprised me a bit, but maybe it

shouldn’t — Dr. Fogarty uses it.)

Some mentioned using Web-based interfaces for it. “In the cloud” has its

appeal, plus they probably provide more of a GUI-fied interface?

• One person said Word/Docs vs. LATEX was kind of like Python vs. Java —

one’s good for short simplel things, the other for complex tasks.

CSCI 3294 October 17, 2018

Slide 3

Basic LATEX Features — Review/Recap

• Sectioning commands make (optionally) numbered sections, subsections,

etc. \tableofcontents generates table of contents.

• Predefined macros provide simple markup, e.g., \textit{foo}.

• Environments provide support for lists, etc. One worth noting for CSCI types

is verbatim, which typesets text as is in typewriter font. Simple way to get

code in your program. (A “gotcha” — it doesn’t expand tabs.)

• Math can be displayed inline, as centered and un-numbered equations, or as

numbered equations.

Slide 4

Basic LATEX Features, Continued

• Lots of cross-referencing features — declare symbolic label (for section,

figure, etc.) with \label{foo}, reference with \ref{foo}, or

\pageref{foo} to get page number. (The computer keeps track of

numbering! Isn’t this how it ought to work?)

• Can use \input to pull in code from another file, like #include in C.

Very useful for accessing your own macros. (I also use it quite a lot in

preparing material for classes. Not long ago I got tired of copying and pasting

text from one syllabus to another and refactored(?) to put common parts in a

single place.)

\verbatiminput typesets included material verbatim. Simple way to

include whole program listing.

CSCI 3294 October 17, 2018

Slide 5

Bibliographies

• Can sort of do by hand, but better is to use companion tool BIBTEX:

• You write a .bib file that’s a sort of database of references (meaning it can

contain more entries than you will use for this document). Predefined types of

entries, each with a list of keywords you must/may define (author, title, etc.).

Also define for each entry a symbolic name.

• In your document, reference symbolic names with \cite. At the point

where you want the bibliography, reference the database with

\bibliography, and select a predefined style with

\bibliographystyle (or you can write your own!). Everything

automatic from there, including formatting. (Isn’t this how it should be?)

A “gotcha” — bibtex has its own ideas about capitalization. Sometimes

this is bad, e.g., when you need all-caps in a title. Enclose in curly braces.

Slide 6

Tables and Graphics

• Support for tables with “tabular” environment. Something(?) of a pain to use

but oh well (and would lend itself to being produced programmatically).

• Easy to include graphics from outside file. With traditional toolchain, must be

in EPS (Encapsulated PostScript), but they scale nicely if you need that.

pdflatex accepts input in various popular graphics formats. Not sure

about scaling.

• Also there are packages for drawing figures directly.

• (More about various ways to generate figures next time.)

CSCI 3294 October 17, 2018

Slide 7

“Floats”

• Figures and tables can “float” (LATEX will put them where they fit). They also

can be given labels.

• In my thinking this is how you should always include these elements, with a

caption explaining anything that needs explaining (within reason) and a

reference in the text such as “Figure \ref{somefig} illustrates this

point.” This avoids awkward page breaks and looks professional.

Slide 8

User-Defined Markup

• Facilities to define your own “commands” and “environments”. Makes it easy

to get consistent formatting; also can provide convenient shorthand ways of

doing things.

• To define a simple macro (“command”), \newcommand. Examples in

sample document.

• To define a custom environment, \newenvironment.

CSCI 3294 October 17, 2018

Slide 9

Processing LATEX Source, Revisited

• Old way is to use latex to generate DVI file (possibly running it several

times and also using bibtex if needed for bibliography) and then use

dvips to generate PostScript (and then probably convert to PDF with

ps2pdf).

Newer way is to use pdflatex to go directly to PDF.

(Why run several times? as with C compiler, it’s kind of a one-pass process,

and it takes more than one pass to resolve crossreferences.)

• Another way — use latekmk, which runs latex (as many times as

needed) and bibtex if needed. Many useful options, including:

-outdir to put all output in (sub)directory.

-c to clean up intermediate files.

Normally generates DVI file, but you can go direct to PDF, or use dvipdf.

• Remember on our machines to do a

Slide 10

module load texlive-latest.

CSCI 3294 October 17, 2018

Slide 11

Related Tools

• gnuplot integrates nicely with LATEX.

• Many possible ways to draw figures, but I use xfig — old, but nice

integration with LATEX. (Also what it saves/loads is plain-text files.)

• Tools to convert LATEX source to HTML. (I use latex2html; there are

others.)

• Tools for editing LATEX source. Support in both emacs and vim (auctex

and vimlatex respectively). Also GUI frontends. See “useful links” page.

Slide 12

Minute Essay

• We still have many weeks left. I’m planning to do one more lecture on

graphics for LATEX a lecture or two on miscellaneous text-mode tools, and

maybe one on installing from source. But there’s time for other topics.

Suggestions?

