
CSCI 3294 October 24, 2018

Slide 1

Administrivia

• Reminder: Homework 8 due Monday.

Slide 2

Homework 6 Essays

• One person said make seemed much pickier than initially thought. But really,

it’s kind of a compiler, and you know how picky compilers can be, no? (Was

this about the tabs thing? that is weird and annoying.)

• Several people commented that the assignment wasn’t very difficult but was a

good introduction or review. Good to hear! Others had a bit of trouble but got

it sorted out.

• One person with previous experience found implicit rules new and useful.

Indeed!

• One person said it was nice once you had the makefile built to type make

and watch it execute the commands. Agreed!

CSCI 3294 October 24, 2018

Slide 3

Running Things “In Absentia”

• You already know how to run programs on a Linux (or other UNIX) computer

without being physically present — remote login.

• Can you also run programs without being “present” even remotely? Yes . . .

Slide 4

One-Time Batch Work

• at and batch allow you to put “jobs” (sequences of commands) in a queue

for later execution. batch says “run when system load permits”. at says

“run at specified time” (lots of options for that — look at man page).

• atq shows queued work. atrm allows cancelling previously-scheduled

work.

• Both of these send stdout and stderr by e-mail. On your own system, this may

be straightforward. (Or it may not. The traditional setup, with mail delivered

locally, is probably not the norm these days.)

On the classroom/lab machines, simplest way to make this work may be to

forward mail to your TMail account. To do this, make a plain-text file

˜/.forward with the forwarding address.

CSCI 3294 October 24, 2018

Slide 5

Scheduled Work

• Background daemon cron executes “jobs” at scheduled intervals — every

minute, hour, day, etc. (These days it often seems to be anacron, which

takes into account the fact that systems may not be continuously on.)

• What jobs? System-related jobs are those in /etc/cron.daily etc.

There are also user-specific “tables” listing other jobs.

• To schedule something, as administrator you could put something in one of

those /etc/cron.* directories. Or . . .

Slide 6

Scheduled Work, Continued

• But cron also makes user of those user-defined tables, managed via

crontab. (CAUTION: If you try this one of our machines, be sure you try

out the job interactively first. Runaway jobs could make trouble for other users

as well, and you might not notice right away.)

• Syntax for crontab entries is somewhat arcane, but documented in

man 5 crontab.

• Output of these “cron jobs” goes to e-mail, as with at.

• The environment (including environment variables) for these jobs may be

somewhat different from what you have in a shell. Probably best not to

assume too much, for example about $PATH.

CSCI 3294 October 24, 2018

Slide 7

Work Started Interactively

• You’ve probably(?) observed that if you start a command and then close the

terminal where you started it, the command stops.

• One way around this is with command nohup. Type nohup followed by the

command, which should probably redirect all three standard streams (stdout,

stderr, and stdin), followed by &.

• Another way is to use the command screen . . .

Slide 8

screen — A Text-Based Window Manager(!)

• screen is . . . a “virtual virtual terminal”, a “text-based window manager”,

something that multiplexes a physical terminal betwen several processes,

usually interactive shells.

• Supports one or more “windows” (programs, usually shells), plus one or more

“regions” (areas on screen).

• Functionality includes

– Ability to leave programs running even if “real” terminal isn’t there — i.e.,

disconnect/reconnect.

– Ability to copy and paste text among windows, log stuff, etc.

• (Dr. Fogarty uses this in class I believe? one of you asked about something

he does to show a program and execution in a single terminal window?)

CSCI 3294 October 24, 2018

Slide 9

screen Basics

• screen starts things up. By default, no visual cues that you’re in a

screen session. Probably a good idea to have a simple configuration file

(˜/.screenrc to change that. (There’s one on the “sample programs”

page.)

• Commands to screen start with control-a. (To send an actual

control-a to a program such as emacs, control-a a.)

• control-a ? shows key bindings.

Slide 10

screen — Windows and Regions

• control-a c creates a new window running your default shell. Exiting

the shell (control-d or exit) closes it. Closing the last window exits

screen.

control-a twice switches windows, or control-a " if more than two.

• control-a S splits a window into two regions. control-a TAB

switches between them. (Second region seems to start out blank. Switch to it

and select a window as above.) control-a X exits a region.

CSCI 3294 October 24, 2018

Slide 11

screen — Detaching and Reattaching

• control-a d detaches session. screen -r to resume.

• Session also automatically detached if you’re logged in remotely and the login

times out. Note however that if the machine is rebooted the session ends.

Slide 12

screen — Copying and Pasting

• control [to initiate copy-to-buffer. Move cursor to start of area to copy,

press space, move to end, press space again.

• control] to paste copied text.

CSCI 3294 October 24, 2018

Slide 13

screen — Where to Learn More

• man page (long but maybe thorough?), or try

http://www.gnu.org/software/screen. (Worth noting that

this is for the GNU version of the command; some UNIX-like systems (Mac??)

have a non-GNU version, which sadly is much less featureful.)

• From the man page:

“A weird imagination is most useful to gain full advantage of all the features.”

Slide 14

Minute Essay

• Can you think of things for which you might use one or more of the tools

discussed today?

