
CSCI 3322 August 26, 2020

Slide 1

Administrivia

• (None really, except to note links to presentation on “schedule” page.)

• (This is where I will announce upcoming assignments.)

Slide 2

What is an Algorithm?

• From Merriam-Webster.com:

a procedure for solving a mathematical problem (as of finding the

greatest common divisor) in a finite number of steps that frequently

involves repetition of an operation

• From Donald Knuth:

An algorithm is a finite, definite, effective procedure, with some input

and some output.

• May be worthwhile (textbook thinks so) to talk a few minutes in general about

algorithms and why study them.

1



CSCI 3322 August 26, 2020

Slide 3

What is an Algorithm, Continued

• An algorithm solves a problem, defined by a specification. For example, here

is the problem solved by sorting algorithms:

Input: A sequence of n numbers a1, a2, . . . an.

Output: A permutation a′1, a
′

2, . . . a
′

n
of the input numbers such that

a′
k
≤ a′

k+1
for k ∈ 1 . . . n− 1.

• To be considered correct, the algorithm must do two things: halt, and end in a

state that meets the specification.

• (Getting the specification right matters. What happens if we take out the

requirement that the output be a permutation of the input?)

• You were likely introduced in CS1 to several problems that solve this problem.

We’ll revisit some of them in this course as a way of presenting the notation to

be used and the notion of asymptotic growth (“big-oh notation”).

Slide 4

Applications of Algorithms

• Internet: Web search, packet routing, . . .

• Security: Cell phones, e-commerce, voting machines, . . .

• Biology: Mapping the human genome, protein folding, . . . (Dr. Hibbs’s

research is in this category.)

• Computer graphics: Movies, video games, virtual reality, . . .

• Physics: Large-scale simulation. (Dr. Lewis’s research is in this category.)

• And many more . . .

2



CSCI 3322 August 26, 2020

Slide 5

“Algorithm” in Popular Usage

• A bit of personal history: My dad spent most of his career in IT (after starting

out as an aerospace engineer). Back then, in the mainframe days, keeping

track of computer resource allocation and using the records to bill

appropriately required a complicated algorithm. My dad spent the last few

years of his working life as “keeper of the algorithm”, which seemed to involve

a lot of complicated calculation and some politics. My mother consequently

thinks an algorithm is something extremely mysterious and arcane.

• In the popular press, “algorithm” also has (I think) something of an aura of the

arcane, as in: What determines what’s in our social media news feed?

“Algorithms” (meaning something mysterious and arcane and likely to make

decisions that sometimes are biased and sometimes not productive of good

results). They’re not wrong!

• Both of these uses of “algorithm” show how there’s a political(?) side to the

idea of an algorithm — or maybe to the idea of a problem specification.

Slide 6

Broadly-Applicable Problems

• There are a number of CS-y-sounding problems whose solutions are broadly

applicable. Examples:

• Finding shortest path through a connected system — useful for in map

applications, e-commerce to plan delivery schedules, . . .

• Finding ordering of operations that sorts on some criterion while maintaining

ordering (“topological sort”).

3



CSCI 3322 August 26, 2020

Slide 7

“Hard” Problems

• For some problems, the naive or brute-force solution involves examining each

of the possible solutions to a problem (e.g., finding the shortest path through

a connected system — the classic traveling-salesperson problem). But

sometimes that’s a lot of possible solutions (on the order of N ! for some

problems). This is computationally inefficient!

• There are many problems in this category; it is thought that there are no

efficient solutions to any of them — but if one of them can be solved

efficiently, then they all can be. These are the so-called “NP-complete”

problems, and one of the things we will look at is determining whether a

problem you’re trying to solve is in that class. If it is, no need to waste time

looking for an efficient solution! (What to do? Often it is possible to find an

efficient way to produce a good approximation.)

Slide 8

Algorithms as Technology

• Algorithms can be considered fundamental technology, just like hardware,

compilers, GUIs, . . .

• Some applications probably don’t require much in the way of algorithms, but

they almost for sure rely for implementation on applications of algorithms

(e.g., in the compiler that translates the program into something

machine-readable).

• Even techniques that seem to allow for solving complex problems without

algorithms— data science, machine learning — are themsolves collections of

algorithms.

4



CSCI 3322 August 26, 2020

Slide 9

Efficiency of Algorithms

• We’ll look at this more mathematically in Chapter 3, but for now we’ll say that

often we can estimate running time of an algorithm as some constant times a

function f(n), where n is the size of the problem, such as size of list in

sorting.

• The constant factor is important, and depends on details of the

implementation, the compiler used to translate it for machine execution, the

hardware used to run it, and many other details that do matter.

• But what matters more, especially for large inputs, is the function — if you plot

any function whose largest term is n and any whose largest term is n2, over

a large range of problem sizes, you’ll notice something . . .

• (Little story from my grad-school days.)

Slide 10

Minute Essay

• (The questions I meant to ask last time but then ran out of time. Remember

— send me answers by e-mail.)

• What are your goals for this course? Are there specific topics you’re

interested in?

• Anything else you want to tell me? about the course, what you did this

summer, . . . ?

5


