
CSCI 3322 August 31, 2022

Slide 1

Administrivia

• Slightly revised version of InsertionSort.cpp sample program

posted, including code to optionally print intermediate results. (Could be

helpful in understanding how the algorithm works.)

• Reading Quiz 1 assigned. Linked from schedule page. Due in a week. Turn in

by putting a PDF or plain-text file in the folder for this assignment in the

Google Drive TurnIn folder I set up for you.

Slide 2

Another Sorting Algorithm: Merge Sort

• Several broad algorithm design techniques exist. Insertion Sort uses

“incremental” approach. (I’m not 100% sure what the textbook means by that!)

• Another is “divide and conquer”. This approach solves problems using three

basic steps:

Split the problem into subproblems that are smaller instances of the whole

problem, unless they’re so small and simple that they can be solved directly.

(Call these base cases.)

Solve the subproblems by solving them recursively, to produce subsolutions.

Merge the subsolutions into a solution to the whole problem.

• Mergesort is a classic example.

1



CSCI 3322 August 31, 2022

Slide 3

Merge Sort

• Apply divide and conquer strategy to the basic problem of sorting an array:

• Base case is an array of size 1, or 0: Nothing to do; solution is just the input

array.

• Split by splitting the array at its midpoint into two subarrays. (Or as close as

we can get, if array size is not even.)

• Sort the subarrays by applying the algorithm recursively.

• Merge the two sorted subarrays. Since each is in order, this is a less difficult

problem than a full sort; it works much as you’d solve the problem of merging

two sorted decks by hand — repeatedly look at the top cards of the two decks

and move the smaller into the output deck, until one deck is used up, and then

move the remaining cards from the nonempty deck.

Slide 4

Algorithm for Merge

• We could more formally specify the merge step as follows:

Input: An array A[p, r] consisting of two subarrays A[p, q] and A[q + 1, r],

each in order.

Output: An array A[p, r] that is a permutation of the input array and that is in

order.

2



CSCI 3322 August 31, 2022

Slide 5

Algorithm for Merge, Continued

• Algorithm to merge subarrays A[p : q] and A[q + 1 : r] to produce A[p, r]:

MERGE(A, p, q, r)

nL = q − p+ 1

nR = r − q

new arrays L[0 : nL − 1], R[0 : nR − 1] // Note 0-based indexing

for i = 0 to nL − 1 // Copy A[p : q] into L

L[i] = A[p+ i]

for j = 0 to nR − 1 // Copy A[q + 1 : r] into R

R[j] = A[q + j + 1]

i = 0 // smallest remaining element in L

j = 0 // smallest remaining element in R

k = p // next in A to fill

(continued on next slide)

Slide 6

Algorithm for Merge, continued

• (continued from previous slide)

// As long as each of arrays L and R contains an unmerged element,

// copy smallest unmerged element back into A[p, r]

while (i < nL) and (k < nR)

if (L[i] <= R[j])

A[k] = L[i]

i + = 1

else

A[k] = R[j]

j + = 1

k + = 1

(continued on next slide)

3



CSCI 3322 August 31, 2022

Slide 7

Algorithm for Merge, continued

• (continued from previous slide)

// Having gone through one of L and R entirely, copy

// remainder to end of A[p, r]

while (i < nL)

A[k] = L[i]

i + = 1

k + = 1

while (j < nR)

A[k] = R[j]

j + = 1

k + = 1

Slide 8

Correctness and Analysis of MERGE

• It’s not too hard to see that if both A[p : q] and A[q + 1 : r] are sorted, this

algorithm does what it’s supposed to do, and all the loops terminate.

• With regard to execution time, if we let n be the length of A[p, r]:

• The loops that copy the two pieces of A[p, r] into L and R together require

time proportional to n.

• The remaining loops combined copy each element of the original A[p, r]

from either L or R back into A[p, r], so these together also require time

proportional to n.

• Total execution time is therefore Θ(n).

4



CSCI 3322 August 31, 2022

Slide 9

Algorithm for Merge Sort

• Now we can write an algorithm for the full merge sort (sorting array

A(p : r)). Pseudocode, using MERGE as a subprogram:

MERGE-SORT(A, p, r)

if p ≥ r //zero or one element?

return

q = ⌊(p+r)⌋
2 //midpoint of A[p : r]

MERGE-SORT(A, p, q) // recursively sort A[p, q]

MERGE-SORT(A, q+ 1, r) // recursively sort A[q + 1, r]

// Merge A[p, q] and A[q + 1, r] into A[p, r]

MERGE(A, p, q, r)

Slide 10

Correctness of MERGE-SORT

• The textbook doesn’t seem to explicitly give an argument for correctness of

this algorithm. I like to reason about divide-and-conquer algorithms using the

following approach, which like loop invariants is based on the same kind of

reasoning used in mathematical induction:

• Does it work on the base case(s)? (Here, yes, trivially true that an array of

size 0 or 1 is sorted.)

• Does the “split” part split the whole problem into problems whose solution can

be combined to solve the whole problem, and if the recursive calls work, does

the “merge” merge their solutions into a solution for the full problem? (Here,

we already looked at why MERGE works.)

• Does the recursion eventually stop? (Here, yes — the “split” produces smaller

arrays, and when array size gets below 2, the recursion stops.)

5



CSCI 3322 August 31, 2022

Slide 11

Analysis of MERGE-SORT

• Methods of counting operations based on loops don’t really work here, since

the repetition is based on recursion rather than on loops. When recursion is

involved, often possible to describe its running time with a recurrence

equation or recurrence and then proceed using mathematical tools for solving

recurrences.

• More about this in Chapter 4, but for now . . .

Slide 12

Analysis of MERGE-SORT

• Suppose:

The algorithm divides a problem of size n into a subproblems, each of size

n/b.

The “split” part requires time D(n).

The “combine” part requires time C(n).

• Then worst-case execution time T (n) can be expressed with the following

recurrence relation:

T (n) =







Θ(1) if n < n0

D(n) + aT (n/b) + C(n) otherwise

6



CSCI 3322 August 31, 2022

Slide 13

Analysis of MERGE-SORT, Continued

• For MERGE-SORT:

• a is 2, and b is also 2. (True that if the array size is odd, strictly speaking the

two subproblems are not the same size, but their size differs by at most one,

so we can reasonably say “close enough”.)

• Solving the base case is Θ(1) (i.e., constant time).

• D(n) (the “split”) is also Θ(1).

• C(n) (the “merge”’) is Θ(n), as discussed previously.

• Combining these, and simplifying a little more, we get:

T (n) =







c1 if n = 1

2T (n/2) + c2n if n > 1

Slide 14

Analysis of MERGE-SORT, Continued

• We can apply the “master theorem” presented in Chapter 4 to solve this

recurrence, giving

T (n) = Θ(n logn)

(Strictly speaking, the log function here is base-2 log, but all log functions

have the same order of growth, so we can be a little sloppy.)

(If you’ve forgotten: log2 n is the number m such that 2m = n — e.g.,

log2 16 = 4.)

• Since logn grows more slowly than n, this is very much a win over insertion

sort. (Compare plots for some n logn functions and some n2 functions.)

7



CSCI 3322 August 31, 2022

Slide 15

Analysis of MERGE-SORT, Continued

• If it bugs you to rely on a mysterious “master theorem”, there’s also a

more-intuitive rationale, sketched out in the textbook:

• We can draw a tree representing the recursive process; we start with the full

array, split into two halves, and then continue splitting the pieces at the

current level into two subarrays each.

• This produces a tree, each level of which has double the number of

subproblems as the level above, of half their size. So each level of the tree

requires time Θ(n) to solve.

• And how many levels are there? well, you can only do that split log2 n times

before you get size 1 or 0.

Slide 16

Implementations

• I wrote code to implement this algorithm; it’s MergeSort.cpp under

“sample programs” on the course Web site.

• Worth noting that this is likely not the most efficient implementation, since it

does involve allocating two new arrays and copying the whole array at every

step. Better to set up two arrays to begin with, and repeatedly sort with one

as input and the other as output.

• Note also that applying the algorithm to small arrays involves a lot of function

overhead for the recursive calls, so an efficient sort might switch to insertion

sort or another Θ(n2) algorithm for arrays below some threshold size.

8



CSCI 3322 August 31, 2022

Slide 17

Minute Essay

• FIXME

• Any questions?

9


