
CSCI 3322 September 19, 2022

Slide 1

Administrivia

• Homework 1 posted; due end of this week.

Slide 2

Divide and Conquer Revisited

• “Divide and conquer”, in context, is a strategy for problem-solving that

consists of three steps:

• Split the problem into one or more smaller problems that are instances of the

same problem, unless it’s so small and simple that it can be solved directly (in

which case it’s called a base case).

• Solve the subproblems by solving them recursively.

• Merge the solutions to the subproblems into a solution to the whole problem.

• Note that of course this can only work if this recursive splitting eventually

always reaches a base case.

1



CSCI 3322 September 19, 2022

Slide 3

Analyzing Divide and Conquer Algorithm

• To analyze execution time of a divide-and-conquer algorithm, we use a

recurrence — an equation or inequality that describes a function using the

function itself. As in the mergesort example, this should seem like a logical

way to approach analyzing such an algorithm.

• Generally we’ll be interested in recurrences that are algorithmic, i.e.,:

– T (n) is Θ(1) (i.e., constant-time) for sufficiently small n.

– Every path of recursion ends in a defined base case within a finite number

of recursive invocations.

Slide 4

Solving Recurrences

• Several ways to solve recurrences:

• Substitution method — guesses a solution and proves that it is correct via

induction.

• Recursion-tree method — models the recurrence as a tree, as the textbook

does for MERGE-SORT.

• Master method — applies to recurrences of the form

T (n) = aT (n/b) + f(n)

by applying a “master theorem”.

• Akra-Bazzi method — a general method involving calculus.

2



CSCI 3322 September 19, 2022

Slide 5

Examples — Multiplying Square Matrices

• Matrix multiplication occurs frequently in numerical work. You may remember

how this works, and if not, review summary in Appendix D. Given two N by

N matrices A and B, their product is also N by N , and its elements are

defined as:

cij =
N
∑

k=1

aikbkj

(I find it useful to model this as a dot product of the i-th row of A and the j-th

column of B.)

Generally we’ll look at dense matrices, in which most elements are nonzero.

(In sparse matrices, most elements are zero; such matrices can be more

compactly represented.)

Slide 6

Block-Based Matrix Multiplication

• We’ll first observe that another way to compute the product C = A · B is by

first partitioning each of the matrices into submatrices (“blocks”, also

identified by two indices, e.g., C11 for the top left block) and applying the

basic idea of the algorithm — sum of products — to these blocks:

Cij =

N
∑

k=1

Aik · Bkj

• (Showing that this works is not difficult — basic algebra — though tedious.)

• To put this to use, it’s helpful to define and implement an algorithm to compute

C = C +A ·B

3



CSCI 3322 September 19, 2022

Slide 7

Multiplying Square Matrices, Continued

• As noted, it’s more generally useful to define an algorithm for computing

C = C +A · B (where A, B, and C are n by n dense matrices). The

naive algorithm is just:

MATRIX-MULTIPLY(A,B,C, n)

for i = 1 to n

for j = 1 to n

for k = 1 to n

cij = cij + aik · bkj

It should be fairly clearly that this algorithm’s running time is Θ(n3).

Slide 8

Recursive Matrix Multiplication, Take 1

• A simple way to approach matrix multiplication recursively is based on

dividing each matrix into 4 submatrices, each n/2 by n/2. Then we can

write the desired product as on the next slide . . .

4



CSCI 3322 September 19, 2022

Slide 9

Recursive Matrix Multiplication, Take 1, Continued

• In matrix notation:





C11 C12

C21 C22



 =





A11 A12

A21 A22









B11 B12

B21 B22





• In equation form, one for each submatrix of C :

C11 = A11 ·B11 +A12 · B21

C12 = A11 ·B12 +A12 · B22

C21 = A21 ·B11 +A22 · B21

C22 = A21 ·B12 +A22 · B22

Slide 10

Recursive Matrix Multiplication, Take 1, Algorithm

• An algorithm based on this approach (assuming C is initialized to 0):

MATRIX-MULTIPLY-RECURSIVE(A,B,C, n)

if n == 1

c11+ = a11 · b11 // Base case

return

MATRIX-MULTIPLY-RECURSIVE(A11, B11, C11, n/2)

MATRIX-MULTIPLY-RECURSIVE(A11, B12, C12, n/2)

MATRIX-MULTIPLY-RECURSIVE(A21, B11, C21, n/2)

MATRIX-MULTIPLY-RECURSIVE(A21, B12, C22, n/2)

MATRIX-MULTIPLY-RECURSIVE(A12, B21, C11, n/2)

MATRIX-MULTIPLY-RECURSIVE(A12, B22, C12, n/2)

MATRIX-MULTIPLY-RECURSIVE(A22, B21, C21, n/2)

MATRIX-MULTIPLY-RECURSIVE(A22, B22, C22, n/2)

5



CSCI 3322 September 19, 2022

Slide 11

Recursive Matrix Multiplication, Take 1, Implementation

Details

• It’s worth noting that in order to make access to the submatrices work we

have to either copy the submatrices to and from temporary storage, incurring

a runtime cost of Θ(n2), or manipulate indices appropriately, which takes

constant time. The latter is more efficient and practical, though the details are

a little tedious to work out.

Slide 12

Sidebar: Block-Based Matrix Multiplication, Revisited

• Total tangent, but I think maybe interesting:

• Matrix multiplication turns out to be an operation that lends itself to

“parallelization” (solving in a way that uses multiple threads or processes at

the same time), and often block-based algorithms work well for such

implementation.

• So . . . I teach an elective (CSCI 3366) in parallel computing, and I use matrix

multiplication as an example. I used to do research on design patterns for

parallel computing, and one of my long-term research collaborators claimed

that block-based matrix multiplication was faster even without multiple

processes or threads, because it “made better use of the memory hierarchy”

(cache etc.). I was skeptical, but when I wrote code for it . . . (Short demo.

Note that code is available on course Web site under “sample programs”.)

6



CSCI 3322 September 19, 2022

Slide 13

Sidebar, Continued

• Sample code accesses submatrices using the method of index calculation,

based on a slight extension to how straight C represents multidimensional

arrays:

• Straight C represents an m by n 2D array A in “row-major” order, i.e., as a 1D

array AA of size m · n consisting of row 0 of A followed by row 1, then row 2,

etc. A[i][j] is then accessed as [(i*n)+j]. (A diagram helps here!)

How then to access elements of submatrices? well, each row of a submatrix

is contiguous in memory, just as a full row is, but while the rows of the full

matrix are laid out one after another, the rows of a submatrix aren’t, but are

spaced out at regular intervals, based on the dimensions of the full matrix. An

index relative to a submatrix is not too hard to compute using the dimensions

of the full matrix and a “stride” variable representing the distance between

submatrix rows in the full 1D array. Here too a diagram is helpful, and see

example code.

Slide 14

Algorithm Correctness

• The base case is okay — in this case each of the submatrices is a single

element.

• It might not be 100% obvious why this algorithm correctly translates the

block-based equations for the multiplication, but: Note that each of the

equations does two multiplications and adds the result, for a total of 8

calculations of the form Cij+ = Aik ·Bkj . (This also explains why it’s

useful to have as a basic operation C = C +A ·B.)

7



CSCI 3322 September 19, 2022

Slide 15

Algorithm Execution Time

• If we let T (n) be execution time of the algorithm:

• First we note that the base case just performs one scalar multiplication and

one addition, so it is solved in constant time.

• In the recursive case, we call MATRIX-MULTIPLY-RECURSIVE a total of eight

times, each with a problem size of n/2, for a total of 8T (n/2). The cost to

split the problem is the cost to partition the matrix into submatrices, which if

we do it by manipulating indices is constant, and there’s no cost to combine

(since we update C in place). This gives a recurrence of

T (n) = 8T (n/2) + Θ(1)

Slide 16

Algorithm Execution Time, Continued

• The textbook uses the “master method” (more later) to get an order of growth

of Θ(n3) for this recurrence. It’s at least a bit reassuring that this is the same

as the order of growth of the naive algorithm, since this does seem like it’s

doing the same basic operations, just in a different order, no?

8



CSCI 3322 September 19, 2022

Slide 17

Recursive Matrix Multiplication, Take 2

• It probably seems intuitively obvious that execution time for matrix

multiplication would be at best Θ(n3), and this was widely believed for a long

time, but then a mathematician named Strassen came up with al algorithm

that runs in Θ(nlog 7) time, which isn’t as dramatic an improvement as

mergesort over insertion sort but is an improvement!

• It does this by reducing the number of recursive steps from eight to seven.

More next time . . .

Slide 18

Minute Essay

• Questions?

9


